

Volume 79 (2023) Supporting information for article:

Structural basis for the allosteric pathway of 4-amino-4-

deoxychorismate synthase

Yusuke Nakamichi, Jyumpei Kobayashi, Koichi Toyoda, Masako Suda, Kazumi Hiraga, Masayuki Inui and Masahiro Watanabe

	Crystal 0		Crustal 1		Crystal 2		Crystal 3	
			Q-score:	0.972	Q-score:	0.931	Q-score:	0.789
Crystal 0			RMSD:	0.239	RMSD:	0.257	RMSD:	0.887
			Aligned residues	: 181	Aligned residues	: 182	Aligned residues	: 174
	Q-score:	0.972			Q-score:	0.935	Q-score:	0.775
Crystal 1	RMSD:	0.239			RMSD:	0.354	RMSD:	0.920
	Aligned residues	s: 181			Aligned residues	: 184	Aligned residues	: 174
	Q-score:	0.931	Q-score:	0.935			Q-score:	0.742
Crystal 2	RMSD:	0.257	RMSD:	0.354			RMSD:	1.045
	Aligned residues	s: 182	Aligned residues	: 184			Aligned residues	: 177
	Q-score:	0.789	Q-score:	0.775	Q-score:	0.742		
Crystal 3	RMSD:	0.887	RMSD:	0.920	RMSD:	1.045		
	Aligned residues	s: 174	Aligned residues	: 174	Aligned residues	: 177		

Table S1 (Comparison	of PabA	domain	structures.
------------	------------	---------	--------	-------------

Q-score and RMSD were calculated by GESAMT program in the CCP4 suite (Krissinel, 2012).

	Crystal 0		Crustal 1		Crystal 2		Crystal 3	
			Q-score:	0.982	Q-score:	0.962	Q-score:	0.969
Crystal 0			RMSD:	0.227	RMSD:	0.417	RMSD:	0.359
			Aligned residues	s: 467	Aligned residue	s: 468	Aligned residues	s: 469
	Q-score:	0.982			Q-score:	0.959	Q-score:	0.970
Crystal 1	RMSD:	0.227			RMSD:	0.415	RMSD:	0.353
	Aligned residue	s: 467			Aligned residue	s: 466	Aligned residues	s: 468
	Q-score:	0.962	Q-score:	0.959			Q-score:	0.944
Crystal 2	RMSD:	0.417	RMSD:	0.415			RMSD:	0.490
	Aligned residue	s: 468	Aligned residues	s: 466			Aligned residues	s: 467
	Q-score:	0.969	Q-score:	0.970	Q-score:	0.944		
Crystal 3	RMSD:	0.359	RMSD:	0.353	RMSD:	0.490		
	Aligned residue	s: 469	Aligned residues	s: 468	Aligned residue	s: 467		

Table S2Comparison of PabB domain structures.

Crystal 2					Crystal 3										
PabA	4			PabB	;		Distance	PabA				PabB			Distance
							(Å)								(Å)
								Tyr	9	Οη		Glu	603	Οε2	2.57
								Asp	10	0		Asn	538	Νδ2	2.79
Ser	11	Ογ		Lys	598	Ν	3.06								
								Ser	11	0		Asn	538	Νδ2	3.28
Thr	13	N		Asn	538	Οδ1	3.06								
His	14	N		Asn	538	Οδ1	2.71	His	14	N		Asn	538	Οδ1	2.81
Asn	15	Οδ1		Asn	541	Νδ2	2.83	Asn	15	Οδ1		Asn	541	Νδ2	2.76
												Asn	538	Ν	3.15
Asn	15	Νδ2		Asp	534	0	2.73	Asn	15	Νδ2		Asp	534	0	2.79
								Asn	15	N		Asn	538	Οδ1	3.16
Gln	18	Oɛ1		Asn	541	Νδ2	2.69	Gln	18	Oɛ1		Asn	541	Νδ2	2.86
Gln	18	Ne2		Val	549	0	2.97	Gln	18	Ne2		Val	549	0	3.04
Gly	53	0		Tyr	435	Οη	3.13	Gly	53	0		Tyr	435	Οη	2.60
Gly	55	N		Gly	432	0	2.59								
Asp	62	Οδ1		Arg	600	Ny2	2.73								
Arg	105	Nε		Glu	523	Οε2	3.16								
Tyr	129	Οη		Asp	534	Οδ2	2.65	Tyr	129	Οη		Asp	534	Οδ2	2.41
Glu	170	0		Arg	537	Nŋ1	3.20	Glu	170	0		Arg	537	Nŋ1	2.94
				Arg	537	Ny2	2.68					Arg	537	Ny2	2.88
Ser	171	Ογ		Asp	534	Οδ2	2.56	Ser	171	Ογ		Asp	534	Οδ2	2.64
Ile	172	N		Asp	534	Οδ1	3.00	Ile	172	N		Asp	534	Οδ1	2.88

Table S3Polar interactions between PabA and PabB domains.

Crysta	al 2			Crystal 3					
				Tyr	9		Lys	599	
							Arg	600	
							Glu	603	
Asp	10	 Tyr	435	Asp	10		Asn	538	
		Asn	538						
		Pro	597						
Ser	11	 Asp	534	Ser	11				
		Leu	535						
		Asn	538				Asn	538	
		Pro	597				Pro	597	
		Lys	598						
Phe	12	 Tyr	435	Phe	12		Tyr	435	
		Met	531						
		Asp	534						
		Leu	535						
		Asn	538				Asn	538	
		Ala	596						
Thr	13	 Asn	538	Thr	13		Asn	538	
His	14	 Asn	538	His	14		Asn	538	
		Asn	541				Asn	541	
		Ser	542				Ser	542	
Asn	15	 Asn	541	Asn	15		Asp	534	
		Asp	534						
		Arg	537				Arg	537	
		Asn	538				Asn	538	
							Asn	541	
Phe	17	 Ile	546	Phe	17		Ile	546	

Table S4 Residues at PabA-PabB interface within 4.5 Å.

		Arg	575			Arg	575
Gln	18			Gln	18	 Arg	537
		Asn	541			Asn	541
		Ile	546			Ile	546
		Gly	547			Gly	547
		Val	549			Val	549
Tyr	19	 Arg	537	Tyr	19	 Arg	537
Gly	21	 Ile	546	Gly	21	 Ile	546
Glu	22	 Ile	546	Glu	22	 Ile	546
		Gly	547			Gly	547
Pro	27	 Ile	546	Pro	27	 Ile	546
Gly	53	 Tyr	435	Gly	53	 Tyr	435
						Pro	597
Pro	54	 Gly	432	Pro	54	 Gly	432
		Glu	433			Glu	433
		Tyr	435			Ser	434
		Pro	597			Tyr	435
		Arg	600			Pro	597
						Arg	600
Gly	55	 Asn	431	Gly	55		
		Gly	432			Glu	433
		Glu	433				
		Arg	600			Arg	600
				Ser	56	 Arg	600
				Pro	57	 Glu	433
						Arg	600
				Glu	60	 Glu	433
Arg	61	 Arg	600				
Asp	62	 Arg	600				
Cys	81	 Tyr	435				

Glu	100	 Leu	656				
Pro	101	 Ser	655				
				Met	102	 Glu	523
						Lys	524
						Ala	527
						Ser	655
						Leu	656
His	103	 Ile	429	His	103	 Ile	429
		Tyr	435			Tyr	435
		Ala	527			Ala	527
		Met	531			Met	531
		Ser	655			Ser	655
Gly	104	 Ala	527	Gly	104	 Ala	527
		Leu	530				
		Met	531			Met	531
Arg	105	 Glu	523				
		Ala	527				
		Leu	656				
Val	127	 Leu	530	Val	127	 Leu	530
Tyr	129	 Tyr	435	Tyr	129	 Tyr	435
		Leu	530			Leu	530
		Met	531			Met	531
		Asp	534			Asp	534
				His	130	 Gly	432
						Tyr	435
Ser	131	 Arg	430				
Glu	170	 Arg	537	Glu	170	 Asp	534
						Arg	537
Ser	171	 Leu	530	Ser	171	 Leu	530
		Asp	534			Asp	534

		Arg	537			Arg	537
Ile	172	 Leu	530	Ile	172	 Leu	530
		Val	533			Val	533
		Asp	534			Asp	534
		Arg	537			Arg	537
		Val	551			Val	551
Gly	173	 Leu	530	Gly	173	 Leu	530

Figure S1 MS/MS spectrum of standard *p*ABA and *p*ABA produced by catalyzation of SvPapA and EcPabC. (A) MS/MS spectrum of 5 μ M *p*ABA standard. The retention time of *p*ABA was 1.620 min. (B) MS/MS spectrum of *p*ABA in reaction mixture using 250 mM glutamine and 250 μ M chorismate as substrates. The retention time of *p*ABA was 1.621 min.

Figure S2 Michaelis–Menten kinetic analysis of SvPapA using glutamine and chorismate as substrates. The enzyme was incubated for 5 min at 28 °C and pH 7.5 with various concentrations of glutamine and chorismate. (A) Nonlinear regression curves of initial velocity against glutamine concentration at several fixed concentrations of chorismate (hollow circles: 50 μ M, solid squares: 100 μ M, hollow squares: 150 μ M, solid triangles: 200 μ M, hollow triangles: 250 μ M; n = 5). (B) Secondary curve between V_{max} values for glutamine was calculated in (A), and chorismate concentrations. The final V_{max} value for glutamine was calculated by curve fitting using GraphPad Prism ver.9.5.1 for Windows (GraphPad Software, San Diego California, USA). (C) Nonlinear regression curves of initial velocity against chorismite concentration at several fixed concentrations of glutamine (hollow circles: 5.0 mM, solid squares: 10.0 mM, hollow squares: 15.0 mM, solid triangles: 20.0 mM, hollow triangles: 25.0 mM; n = 5). (D) Secondary curve between V_{max} values for

chorismate, which was calculated in (C), and the glutamine concentrations. The final V_{max} value for chorismate was calculated by curve fitting.

Figure S3 Assigned residues in each chain of crystals 0–3. Each chain is named based on its chain in the coordinate file and crystal type, e.g., "1A" means chain A in crystal 1. Dashes indicate disordered residues. The line named "Sequence" shows the amino acid sequence of SvPapA.

Figure S4 Quaternary structures of SvPapA homodimer, AS heterotetramers, and 2-amino-2deoxychorismate synthase PhzE. TrpE and MST subunits are represented in blue. TrpG and GATase1 subunits are presented in green.

Figure S5 (A) Fo-Fc Polder omit map (5.0σ) for chorismate and Mg²⁺. (B) Polder omit map (3.0σ) for Cys81, which is oxidized to sulfonic acid.

Figure S6 (A and B) PabB-active sites with and without chorismate are presented as stereodiagrams in green and blue, respectively.

References

Krissinel, E. (2012). J. Mol. Biochem. 1, 76-85.