

Volume 79 (2023)
Supporting information for article:

Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis

Kate Sowerby, Stefanie Freitag-Pohl, Ana Milena Murillo, Ariel Mariano Silber and Ehmke Pohl

Figure S1 Closeup of the active site of $\operatorname{Tth} \mathrm{CS}$, showing the protein chain in ribbon representation, the cofactor PLP and the side chains of Lys ${ }^{71}, \mathrm{Thr}^{207}, \mathrm{Thr}^{210}$ and Ser^{294} in stick representation with N in blue, O in red, C in green and P in magenta. Key hydrogen bonds are indicated by dashed lines. Electron density is shown in blue at 1σ level in a $2 F_{o}-F_{c}$ map.

Figure S2 Ribbon diagram of the dimer interface of chain A and B of $T c \mathrm{CS}-\mathrm{Chain} \mathrm{A}$ in dark green, Chain B in light green, ribose shown in stick representation. O is shown in red and N is shown in blue. Residues forming hydrogen bonds and ribose are shown in stick representation with hydrogen bonds displayed as black dashed lines. Electron density is shown in a $2 \mathrm{~F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}$ map blue at 1σ level.

Figure S3 Ribbon diagram of the dimer interface of chain C and D in $T c \mathrm{CS}$ - Chain C in blue chain D in dark teal, glycerol is shown in stick representation. O is shown in red. Electron density is shown in a $2 \mathrm{~F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}$ map blue at 1σ level.

Figure S4 Ribbon diagram of the two crystallographically independent $T c \mathrm{CS}$ dimers with the unit cell shown in black: Chain A in dark green, Chain B in light green, Chain C in blue, Chain D in dark teal.

Figure S5 Close up showing active site of $T c \mathrm{CS}$ Chain A. Dashed lines indicate hydrogen bonds. Atoms are coloured as before. Electron density is shown in a $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ map blue at 1σ level with the electron density indicating the presence of OAS.
1.

2.

3.

4.

5.

Figure S6 Schema showing reaction of PLP with OAS and a sulfide ion to produce cysteine.

Tocs

Figure S7 Multiple Alignment of the cysteine synthase sequences of T. cruzi, T. rangeli, E. coli, L. infantum, L. donovani and T. theileri. Identical residues are displayed in a red box, with similar residues in red text, similar or identical residues are framed in a blue box. The secondary structure annotation is based on the $T c \mathrm{CS}$ structure presented here.

Table S1 Summary of least-squares superpositions of all protein monomers of the three structures, from $T c \mathrm{CS}, L i \mathrm{CS}$ and $T t h \mathrm{CS}$.

Residues $8-308$ from $T c \mathrm{CS}$ and the corresponding residues $5-307$ from LiCS and $6-308$ from TthCS were used. RMSD values given in \AA are presented on the upper right-hand side of table, while the lower left-hand side shows the number of C -alpha atoms used in each least-squares superposition. All calculations were performed with CCP4mg (McNicholas et al., 2011)

	TcCS A	TcCS B	TcCS C	TcCS D	LiCS A	LiCS B	TthCS	TthCS
B								

