

Volume 79 (2023)

Supporting information for article:

Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis

Kate Sowerby, Stefanie Freitag-Pohl, Ana Milena Murillo, Ariel Mariano Silber and Ehmke Pohl

Figure S1 Closeup of the active site of *Tth*CS, showing the protein chain in ribbon representation, the cofactor PLP and the side chains of Lys^{71} , Thr^{207} , Thr^{210} and Ser^{294} in stick representation with N in blue, O in red, C in green and P in magenta. Key hydrogen bonds are indicated by dashed lines. Electron density is shown in blue at 1 σ level in a $2F_{\sigma}$ - F_{c} map.

Figure S2 Ribbon diagram of the dimer interface of chain A and B of TcCS – Chain A in dark green, Chain B in light green, ribose shown in stick representation. O is shown in red and N is shown in blue. Residues forming hydrogen bonds and ribose are shown in stick representation with hydrogen bonds displayed as black dashed lines. Electron density is shown in a $2F_0$ - F_c map blue at 1 σ level.

Figure S3 Ribbon diagram of the dimer interface of chain C and D in TcCS - Chain C in blue chain D in dark teal, glycerol is shown in stick representation. O is shown in red. Electron density is shown in a $2F_{o}\text{-}F_{c}$ map blue at 1 σ level.

Figure S4 Ribbon diagram of the two crystallographically independent *Tc*CS dimers with the unit cell shown in black: Chain A in dark green, Chain B in light green, Chain C in blue, Chain D in dark teal.

Figure S5 Close up showing active site of *Tc*CS Chain A. Dashed lines indicate hydrogen bonds. Atoms are coloured as before. Electron density is shown in a $2F_0$ - F_c map blue at 1 σ level with the electron density indicating the presence of OAS.

Figure S6 Schema showing reaction of PLP with OAS and a sulfide ion to produce cysteine.

Figure S7 Multiple Alignment of the cysteine synthase sequences of *T. cruzi, T. rangeli, E. coli, L. infantum, L. donovani* and *T. theileri*. Identical residues are displayed in a red box, with similar residues in red text, similar or identical residues are framed in a blue box. The secondary structure annotation is based on the *Tc*CS structure presented here.

Table S1Summary of least-squares superpositions of all protein monomers of the three structures,from *Tc*CS, *Li*CS and *Tth*CS.

Residues 8 - 308 from *Tc*CS and the corresponding residues 5 - 307 from *Li*CS and 6 - 308 from *Tth*CS were used. RMSD values given in Å are presented on the upper right-hand side of table, while the lower left-hand side shows the number of C-alpha atoms used in each least-squares superposition. All calculations were performed with CCP4mg (McNicholas *et al.*, 2011)

	TcCS A	TcCS B	TcCS C	TcCS D	LiCS A	LiCS B	TthCS	TthCS
							Α	В
TcCS A		0.54	0.30	0.50	0.70	0.78	0.63	0.56
TcCS B	282		0.60	0.17	0.84	1.02	0.64	0.71
TcCS C	287	298		0.54	0.78	0.73	0.69	0.63
TcCS D	282	303	298		0.83	0.94	0.62	0.68
LiCS A	274	270	275	270		0.72	0.74	0.72
LiCS B	275	271	274	269	277		1.09	0.97
TthCS A	281	303	297	303	268	269		0.74
TthCS B	281	303	297	303	269	270	268	