

Volume 79 (2023)

Supporting information for article:

Structural and binding studies of a new chitin-active AA10 lytic polysaccharide monooxygenase from the marine bacterium *Vibrio campbellii*

Yong Zhou, Suttipong Wannapaiboon, Methinee Prongjit, Soraya Pornsuwan, Jeerus Sucharitakul, Nuntaporn Kamonsutthipaijit, Robert C. Robinson and Wipa Suginta

Figure S1 Absorption spectra of oxidized AmplexTM Red. (A) Various concentrations of H_2O_2 were coupled to AmplexTM Red oxidation with horseradish peroxidase in the peroxide/peroxidase assay (**See Text**). The oxidized product (resorufin) showed maximal absorption at 572 nm. (B) A linear curve fit of the peak absorption value (A_{572}) vs. H_2O_2 concentration.

Figure S2 Heterologous expression and purification of the recombinant *Vh*LPMO10A. *Vh*LPMO10A was expressed in *E. coli* BL21 (DE3) and purified to homogeneity as described in Materials and Methods. (A) SDS-PAGE analysis of the protein after affinity purification. Lanes: Crude, LPMO-containing supernatant after removal of cell debris; FT, flow-through collected after protein loading; Wash, fraction washed with 20 mM imidazole; E1-5, fractions obtained on elution with 150 mM imidazole. (B) A representative gel filtration profile of copper-bound *Vh*LPMO10A. Pooled fractions F17-F20 from A_{280} peak were analyzed by SDS-PAGE. Both protein samples migrated to the expected molecular weight of *Vh*LPMO10A (51,142 Da). Lanes (inset): M, standard protein marker; 1, Cu²⁺-saturated *Vh*LPMO10A; 2, apo-*Vh*LPMO10A.

Figure S3 Sequence and structural analysis of GbpA_2, Module X and CBM73 domains of *Vh*LPMO10A. (A) Sequence alignments of GbpA_2, Module X and CBM73 domains of *Vh*LPMO10A with the known structural homologs from *Vc*LPMO10B (GbpA) and CbpD, respectively. Secondary structure elements are indicated as follows: α , alpha helix; η , 310 helixes; β , beta-strand; T, turn. The pair of cysteines forming a disulfide bridge is labelled with green numbers. The sequence alignment was performed by MUSCLE and the secondary structure elements were constructed by ESPript v.3.0. (B) Structural comparisons of GbpA_2, Module X and CBM73 domains of *Vh*LPMO10A with *Vc*LPMO10B (GbpA) (PDB id: 2xwx) and CbpD (PDB id: 7sqx), respectively. Notably, the structures of CBM73 domain from *Vc*LPMO10B (GbpA) and CbpD were predicted by AlphaFold2 since this domain is missing in their crystal structures.

Supporting information

Figure S4 The confidence output files of the *Vh*LPMO10A dimer predicted by the AlphaFold2 online tool. (A) Sequence coverage of *Vh*LPMO10A *vs.* amino acid position. (B) The predicted local-distance difference test (IDDT) and (C) predicted aligned error (PAE) with five predicted models in which PAE values between the first 3 domains chains are low (blue), indicating a confident prediction of dimerization between these 3 domains. The C-terminal domain shows high (red) PAE values for the positioning relative to the first 3 domains and relative to the dimer. This indicates that the relative position of the C-terminal domain is likely to be flexible.

Figure S5 Energy-dispersive XRF standard curve of CuSO₄. (A) XRF spectra of CuSO₄ from 0 to 0.8 mM scanned using a monochromatic X-ray beam with an energy of 10 keV for excitation and an acquisition time of 300 s. (B) A linear XRF standard curve fit of the relative counts *vs*. H₂O₂ concentration at the characteristic Cu(II) peak (K-alpha, 8.045 keV). Samples of 500 μ L, containing various concentrations of CuSO₄ in 20 mM Tris-HCl, pH 7.5, were placed in plastic bags (20mm × 30mm) and were exposed to the X-ray beam only during the measurements, to avoid radiation damage. The characteristic Cu(II) K-alpha XRF signal was monitored. The current potential, ICR (kcps), dead-time and counts were recorded by ProsPect software.

Figure S6 Copper binding studies by EPR spectroscopy. (A) EPR spectra of copper-saturated *Vh*LPMO10A-Cu(II) (red line) compared to a control containing only free Cu(II) in the same buffer (black line). (B) EPR spectra of *Vh*LPMO10A incubated with various ratios of Cu(II) to *Vh*LPMO10A: 1:1 (red line), 1:5 (green line), and 1:10 (cyan line), respectively. (C) EPR spectra of Cu(II)-loaded *Vh*LPMO10A (red line) in the absence (red line) or presence (blue line) of ascorbic acid. (D) EPR spectrum of Cu(II)-loaded *Vh*LPMO10A showing the splitting constant of $|A|= 14x10^{-4}$ cm. All EPR experiments were performed under aerobic conditions. Samples were in 20 mM Tris-HCl, pH 7.0, and spectra were recorded at 125 K with a 2mW microwave power and a 2 Gauss modulation amplitude. The data are based on a single experiment (n = 1).

Supporting information

Figure S7 The adsorption spectra of cell potential (E°) analysis for the *Vh*LPMO10A-Cu²⁺/*Vh*LPMO10A-Cu⁺ redox couple. Cu²⁺-saturated *Vh*LPMO10A (50 µL,140 µM) was incubated at room temperature (25°C) with 50 µl of an oxygen-free *N*, *N*, *N'*, *N'*-tetramethyl-1,4-phenylenediamine (TMP_{red}) in its reduced form (600 µM or 400 µM) in oxygen-free 20 mM tris buffer, pH 7.5. The solutions were made oxygen-free by bubbling N₂ gas through the buffer for 1 h prior to the addition of TMP_{red} and concentrated LPMO solution. The reaction took place in a UV cuvette (Eppendorf) sealed by parafilm and placed in an Agilent Cary Series UV-Vis spectrophotometer. TMP radical cation (TMP_{ox}), which was the product of the reaction, was monitored continuously by measuring absorbance at 610 nm until the signal became stable.

I)	
$TMP_{red} + VhLPMO10A-Cu^{2+} \rightleftharpoons TMP_{ox} + VhLPMO10A-Cu^{+}$	$K = 0.7, E^{\circ} = -9.5 \text{ mV}$
$TMP_{ox} + e^{-} \rightarrow TMP_{red}$	$E^{\circ} = 273.0 \text{ mV}$
$VhLPMO10A-Cu^{2+} + e^{-} \rightarrow VhLPMO10A-Cu^{+}$	$E^{\circ} = 263.5 \text{ mV}$
II)	
$Cu^{2+} + e - \rightarrow Cu^+$	$E^{\circ} = 160.0 \text{ mV}$
$VhLPMO10A-Cu^+ \rightarrow VhLPMO10A-Cu^{2+} + e^-$	E° = -263.5 mV
$Cu^{2+} + VhLPMO10A-Cu^{+} \rightleftharpoons Cu^{+} + VhLPMO10A-Cu^{2+}$	$E^{\circ} = -103.5 \text{ mV}, \Delta G r^{\circ} = 2.4 \text{ kcal/mol}$
III)	
$Cu^{2+} + VhLPMO10A-Cu^{+} \rightleftharpoons Cu^{+} + VhLPMO10A-Cu^{2+}$	$E^{\circ} = -103.5 \text{ mV}, \Delta G r^{\circ} = 2.4 \text{ kcal/mol}$
$VhLPMO10A-Cu^{2+} \rightleftharpoons VhLPMO10A + Cu^{2+}$	$K_{\rm d} = 110 \text{ nM}, \Delta G r^{\circ} = 9.5 \text{ kcal/mol}$
$VhLPMO10A-Cu^+ \rightleftharpoons VhLPMO10A + Cu^+$	$\Delta G \mathbf{r}^\circ = 11.9 \text{ kcal/mol}, K_d = 1.9 \text{ nM}$

Figure S8 Calculation of the *Vh*LPMO10A-Cu¹⁺ dissociation constant. The *K*_d of *Vh*LPMO10A binding to Cu¹⁺ can be calculated by combining three thermodynamic parameters. First, the cell potential (*E*°) of *Vh*LPMO10A-Cu²⁺/*Vh*LPMO10A-Cu¹⁺ was derived experimentally by determining the equilibrium constant for the electron transfer reaction between the mediator TMP_{red/ox} and *Vh*LPMO10A-Cu^{2+/1+} (reaction scheme I). The cell potential was obtained from the equilibrium constant using the relationship *RT*ln*K* = *nFE*°. Second, the *E*° from thermodynamic relation I was combined with the known *E*° for reduction of Cu²⁺ in aqueous conditions to yield the free energy change (ΔG_r°) for the reduction of aqueous Cu²⁺ by *Vh*LPMO10A-Cu¹⁺ (reaction scheme II) using the relationship ΔG_r° = *-nFE*°. Third, combining the ΔG_r° measured for dissociation of *Vh*LPMO10A-Cu²⁺ (**Fig. 5** and **Table 2**) with ΔG_r° deduced from the electron transfer reaction between aqueous Cu²⁺ and *Vh*LPMO10A-Cu¹⁺, the dissociation of *Vh*LPMO10A-Cu¹⁺ can be calculated (reaction scheme III) using the relationship $\Delta G_r^\circ = RT \ln K_d$.

Name	Organism	GenBank ID	Uniprot ID
BaLPMO10A	Bacillus amyloliquefaciens	CBI42985.1	E1UUV3
BcLPMO10A	Bacillus cereus	WP_001065157.1	Q81CG6
<i>BI</i> LPMO10A	Bacillus licheniformis	AAU39477.1	D0EW67
BtLPMO10A	Bacillus thuringiensis	AJP62637.1	A0A0C5K362
CjLPMO10A	Cellvibrio japonicus	AAO80225.1	Q838S1
<i>Ef</i> LPMO10A	Enterococcus faecalis	AAO80225.1	Q838S1
JdLPMO10A	Jonesia denitrificans	ACV09037.1	C7R4I0
LmLPMO10A	Listeria monocytogenes	CAD00545.1	Q8Y4H4
<i>Pl</i> LPMO10A	Photorhabdus Luminescens	CAE14645.1	Q7N4I5
SamLPMO10B	Streptomyces ambofaciens	CAJ89556.1	A3KIM2
SgLPMO10F	Streptomyces griseus	BAG23684.1	B1VN59
SliLPMO10E	Streptomyces lividans	EOY47895.1	A0A7U9DRA2
SmLPMO10A (CBP21)	Serratia marcescens	AAU88202.1	O83009
VcLPMO10B (GbpA)	Vibrio cholerae	AAF96709.1	Q9KLD5
VhLPMO10A	Vibrio harveyi	WP_011999056.1	A7N3J0

Table S1Fifteen bacterial AA10 LPMOs from with name of orgnanisms used for multiple sequence alignment.GenBank ID and Uniprot ID, which correspond to the names, are shown in Fig. 1.

	Oxidized product	Theoretical MW	Detected MW
	$DP2_{Ox-lac} + Na^+$	444.3652	444.967
	$DP2_{red} + Na^+$	446.3810	447.026
DP2	$DP2_{Ox-al} + Na^+$	462.3804	462.999
DI 2	$DP2_{Ox-al} + K^+$	478.4890	478.643
	$DP2_{Ox\text{-}al} + 2Na^{+}\text{-}H^{+}$	484.3622	484.836
	$DP2_{Ox\text{-}al} + Na^{+} + K^{+}\text{-}H^{+}$	500.4708	501.155
DP3	$DP3_{Ox-lac} + Na^+$	647.5572	648.111
	$DP3_{red} + Na^+$	649.5730	650.064
	$DP3_{Ox-al} + Na^+$	665.5724	666.068
	$DP3_{Ox-al} + K^+$	681.6810	680.085
	$DP3_{Ox-al} + 2Na^+-H^+$	687.5542	688.016
	$DP3_{Ox-al} + Na^+ + K^+ - H^+$	703.6628	703.555
DP4	$DP4_{Ox-lac} + Na^+$	850.7492	851.150
	$DP4_{red} + Na^+$	852.7650	853.084
	$DP4_{Ox-al} + Na^+$	868.7644	869.151
	$DP4_{Ox-al} + K^+$	884.8730	885.058
	$DP4_{Ox-al} + 2Na^+-H^+$	890.7462	891.086
	$DP4_{Ox-al} + Na^+ + K^+ - H^+$	906.8548	907.192
DP5	$DP5_{Ox-lac} + Na^+$	1053.9412	1054.154
	$DP5_{red} + Na^+$	1055.9570	1056.177
	$DP5_{Ox-al} + Na^+$	1071.9564	1072.227
	$DP5_{Ox-al} + K^+$	1088.0650	1088.629
	$DP5_{Ox-al} + 2Na^+-H^+$	1093.9382	1094.162
	$DP5_{Ox-al} + Na^+ + K^+ - H^+$	1110.0468	1100.057
	$DP6_{Ox-lac} + Na^+$	1257.1332	1257.375
	$DP6_{red} + Na^+$	1259.1490	1259.288
DP6	$DP6_{Ox-al} + Na^+$	1275.1484	1275.320
	$DP6_{Ox-al} + K^+$	1291.2570	1291.705
	$DP6_{Ox-al} + 2Na^+-H^+$	1297.1302	1297.357
	$DP6_{Ox-al} + Na^+ + K^+ - H^+$	1313.2388	1313.377
DP7	$DP7_{Ox-lac} + Na^+$	1460.3252	1460.407
	$DP7_{red} + Na^+$	1462.3410	1462.410
	$DP7_{Ox-al} + Na^+$	1478.3404	1478.481
	$DP7_{Ox-al} + K^+$	1494.4490	1494.506
	$DP7_{Ox-al} + 2Na^+-H^+$	1500.3222	1500.454
	$DP7_{Ox\text{-}al} + Na^{+} + K^{+}\text{-}H^{+}$	1516.4308	1516.734
DP8	$DP8_{Ox-lac} + Na^+$	1663.5172	1663.668
	$DP8_{red} + Na^+$	1665.5330	1665.664
	$DP8_{Ox-al} + Na^+$	1681.5324	1681.817
	$DP8_{Ox-al} + K^+$	1697.6410	1698.049
	$DP8_{Ox-al} + 2Na^+-H^+$	1703.5142	1703.957
	$DP8_{Ox-al} + Na^+ + K^+ - H^+$	1719.6228	1719.716

Table S2MALDI-TOF-MS analysis of the representative oxidized products ($DP2_{ox}$ and $DP8_{ox}$) obtained fromthe cleavage of shrimp chitin by *Vh*LPMO10A.