

Volume 79 (2023)

Supporting information for article:

The type III secretion chaperone SctY may shield the hydrophobic export gate-binding C-terminus of its substrate SctX

Dominic Gilzer, Julia L. Kowal, Franziska Flottmann and Hartmut H. Niemann

Table S1Symmetry between complexes in the AU of the AscX₄₉:YscY crystal.

The angle χ describes the rotation needed to superimpose one chain on the other, with 180 ° describing a 2-fold rotation. An angle of 90 ° between this rotation axis and the centroid axis represents a pure rotation, while differing values indicate that a translation is needed for the superposition. All values were calculated using the C α atoms over the entire residue range of the chaperone.

		Chains C + D	Chains E + F	Chains G + H
Chains A + B	χ/°	174.96	145.13	173.21
	Angle to centroid / °	89.71	72.71	89.73
Chains C + D	χ/°	-	175.88	136.44
	Angle to centroid / °	-	91.42	78.14
Chains E + F	χ/°	-	-	178.31
	Angle to centroid / °	-	-	89.13

0.434 Å r.m.s.d. (C α of Chains A + B and Chains C + D) (a)

0.358 Å r.m.s.d. (C α of Chains A + B and Chains C + D) (*b*)

	Chains	Chains	Chains	Chains
	A + B	C + D	E + F	G + H
Chains A + B	0.000	0.813	1.603	0.918
Chains C + D		0.000	1.659	1.198
Chains E + F			0.000	1.443
Chains G + H				0.000

Figure S1 Superposition of SctX:Sct'Y complexes within each crystal. (*a*) Two AscX₃₁:YscY (PDB entry 8ara), (*b*) two AscX₄₉:LscY^{meth} (PDB entry 8arc), and (*c*) four AscX₄₉:YscY (PDB entry 8arb) molecules are aligned in *PyMOL*. The r.m.s.d. value was calculated for C α atoms without outlier rejection. For AscX₄₉:YscY, chain E exhibited notably worse electron density, resulting in an incomplete model lacking the C-terminus of YscY and worse r.m.s.d. values when superimposed onto other complexes in the AU.

Figure S2 *AlphaFold2* predictions of AscX-containing complexes. Models were calculated using the *ColabFold* server supplying both sequences as separate polypeptide chains. Structures of (*a*) AscX:AscY, (*b*) AscX:LscY, and (*c*) AscX:YscY are shown with the chaperone as surface representation and AscX as ribbon. (*d*) Superposition of all three models on the surface of AscY.

Figure S3 Comparison of AscX:SctY complexes with *AlphaFold2* predictions. The obtained crystal structures of (*a*) AscX₃₁:YscY (cyan and magenta), and (*b*) AscX₄₉:LscY (green and orange) were superimposed with their corresponding *AlphaFold2* predictions (AscX in light gray and chaperone in dark gray) in *PyMOL* using the chaperone molecule. For clarity, only the N-terminal TPR of the chaperone and the C-terminal helices of the substrate are shown.

Figure S4 Clashing of extended SctX C-termini in the AscX₃₁:YscY crystal structure. The crystal structure of AscX₃₁:YscY (PDB entry 8ara; AscX₃₁ in cyan, YscY in magenta) was superimposed with a heterodimer of (*a*) YscX₃₂:YscY (PDB entry 7qii; YscX₃₂ in light gray, YscY in dark grey), or (*b*) AscX₄₉:YscY (PDB entry 8arb; AscX₄₉ in dark blue, YscY in violet). The second heterodimer of AscX₃₁:YscY is shown as ribbon model for clarity. An extended α 3-helix as observed for YscX₃₂ and AscX₄₉ would clash with α 1 of AscX and TPR3 of YscY in the AscX₃₁:YscY structure.

Figure S5 Placement of extended SctX C-termini in the AscX₄₉:LscY crystal structure. (*a*) The crystal structure of AscX₄₉:LscY (PDB entry 8arc; AscX₄₉ in green, LscY in orange) was superimposed with a heterodimer of YscX₃₂:YscY (PDB entry 7qii; YscX₃₂ in light gray, YscY in dark grey). The heterodimer of AscX₄₉:LscY used in the alignment is shown as cartoon, the remaining ones are shown as ribbons. A potential extended AscX C-terminus would hardly clash with surrounding molecules in the crystal. The two views are rotated by 90° about one axis. (*b*) A second YscX₃₂:YscY molecule was structurally aligned with a symmetry-related AscX₄₉:LscY heterodimer, resulting in clashes between the two extended C-termini of YscX.