

Volume 79 (2023)
Supporting information for article:

The type III secretion chaperone SctY may shield the hydrophobic export gate-binding C-terminus of its substrate SctX

Dominic Gilzer, Julia L. Kowal, Franziska Flottmann and Hartmut H. Niemann

Table S1 Symmetry between complexes in the AU of the Asc $\mathrm{X}_{49} 9$:YscY crystal.
The angle χ describes the rotation needed to superimpose one chain on the other, with 180° describing a 2-fold rotation. An angle of 90° between this rotation axis and the centroid axis represents a pure rotation, while differing values indicate that a translation is needed for the superposition. All values were calculated using the $\mathrm{C} \alpha$ atoms over the entire residue range of the chaperone.

		Chains C + D	Chains E + F	Chains G + H
Chains A+B	χ°	174.96	145.13	173.21
	Angle to centroid $/{ }^{\circ}$	89.71	72.71	89.73
Chains C + D	χ°	-	175.88	136.44
	${\text { Angle to centroid } /{ }^{\circ}}^{\circ}$	-	91.42	78.14
Chains E + F	χ°	-	-	178.31
	Angle to centroid $/{ }^{\circ}$	-	-	89.13

Figure S1 Superposition of SctX:Sct'Y complexes within each crystal. (a) Two Asc X_{31} : Ysc (Y (PDB entry 8ara), (b) two $\mathrm{AscX}_{49}: \mathrm{Lsc}^{\text {meth }}$ (PDB entry 8arc), and (c) four AscX_{49} : YscY (PDB entry 8arb) molecules are aligned in PyMOL. The r.m.s.d. value was calculated for $\mathrm{C} \alpha$ atoms without outlier rejection. For AscX X_{49} : YscY, chain E exhibited notably worse electron density, resulting in an incomplete model lacking the C-terminus of YscY and worse r.m.s.d. values when superimposed onto other complexes in the AU .

Figure S2 AlphaFold2 predictions of AscX-containing complexes. Models were calculated using the ColabFold server supplying both sequences as separate polypeptide chains. Structures of (a) AscX:AscY, (b) AscX:LscY, and (c) AscX:YscY are shown with the chaperone as surface representation and AscX as ribbon. (d) Superposition of all three models on the surface of AscY.

(a)

(b)

Figure S3 Comparison of AscX:SctY complexes with AlphaFold2 predictions. The obtained crystal structures of (a) $\mathrm{AscX}_{31}: \mathrm{YscY}$ (cyan and magenta), and (b) Asc $\mathrm{X}_{49}: \mathrm{LscY}$ (green and orange) were superimposed with their corresponding AlphaFold2 predictions (AscX in light gray and chaperone in dark gray) in $P y M O L$ using the chaperone molecule. For clarity, only the N -terminal TPR of the chaperone and the C-terminal helices of the substrate are shown.

Figure S4 Clashing of extended SctX C-termini in the AscX X_{31} :YscY crystal structure. The crystal structure of AscX_{31} : YscY (PDB entry 8ara; AscX_{31} in cyan, Ysc Y in magenta) was superimposed with a heterodimer of (a) Ysc_{32} : Ysc (PDB entry 7qii; Ysc_{32} in light gray, Ysc Y in dark grey), or (b) AscX ${ }_{49}$: YscY (PDB entry 8arb; AscX ${ }_{49}$ in dark blue, YscY in violet). The second heterodimer of AscX_{31} : Ysc Y is shown as ribbon model for clarity. An extended $\alpha 3$-helix as observed for Ysc_{32} and AscX ${ }_{49}$ would clash with $\alpha 1$ of AscX and TPR3 of YscY in the AscX X_{31} :YscY structure.

Figure S5 Placement of extended SctX C-termini in the AscX_{49} :LscY crystal structure. (a) The crystal structure of $\mathrm{Asc}_{49}: \mathrm{Lsc} \mathrm{Y}$ (PDB entry 8 arc ; AscX_{49} in green, LscY in orange) was superimposed with a heterodimer of Ysc_{32} : YscY (PDB entry 7qii; YscX_{32} in light gray, YscY in dark grey). The heterodimer of $\mathrm{Asc}_{49}:$:LscY used in the alignment is shown as cartoon, the remaining ones are shown as ribbons. A potential extended AscX C-terminus would hardly clash with surrounding molecules in the crystal. The two views are rotated by 90° about one axis. (b) A second $\mathrm{YscX}_{32}: \mathrm{YscY}$ molecule was structurally aligned with a symmetry-related $\mathrm{Asc}_{49}: \mathrm{Lsc}$ Y heterodimer, resulting in clashes between the two extended C-termini of YscX.

