

Volume 79 (2023)

Supporting information for article:

Conformation-dependent ligand hot spots in the spliceosomal RNA helicase BRR2

Karen Vester, Alexander Metz, Simon Huber, Bernhard Loll and Markus C. Wahl

	C			
Fragment number	Source	NSC or catalog number		
1	NCI	27259		
2	NCI	28593		
3	NCI	30143		
4	NCI	78438		
5	NCI	114955		
6	NCI	125201		
7	NCI	125210		
8	NCI	135258		
9	NCI	135784		
10	NCI	141847		
11	NCI	205947		
12	NCI	209911		
13	NCI	331994		
13	NCI	406839		
17	NCI	675108		
15	NCI	675212		
10	INCI NCI	0/3213		
1/	NCI	749154		
18	NCI	4976		
19	NCI	5863		
20	NCI	7618		
21	NCI	10929		
22	NCI	15404		
23	NCI	26354		
24	NCI	45357		
25	NCI	65057		
26	NCI	119949		
27	NCI	281325		
28	NCI	401252		
29	NCI	403677		
30	In-house library	-		
31	In-house library	-		
32	In-house library	-		
33	In-house library	<u>-</u>		
34	In-house library	_		
35	MolPort/Vitas-M	8006-5398		
36	MolPort/ChemDiv	C607-0922		
30	MolPort/ChemDiv	C607-0922 C607-0923		
29	MolDort/Enomino	COU/-U923 ENI200 59109		
30	MolDort/Enamine	EN300-58198 71421002552		
39	MalDaut/Enamine	Z1431002553 EN200 21442		
40	MolPort/Enamine	EN300-21442		
41	MolPort/Enamine	Z166/03618		
42	MolPort/Specs	AN-329/4260/819		
43	MolPort/Vitas-M	S1K864268		
44	MolPort/Vitas-M	STL361683		
45	MolPort/Vitas-M	STK782837		
46	MolPort/Vitas-M	STK074818		
47	MolPort/Vitas-M	STK085297		
48	MolPort/Bionet	MS-10361		
49	NCI	55259		
50	NCI	300266		
51	NCI	637723		
52	NCI	376		
53	NCI	125224		
54	NCI	157600		
55	NCI	201968		
56	NCI	300395		
57	NCI	376760		
÷ ,		2.0.00		

Table S1Sources of the Fragments.

58	NCI	613272		
59	NCI 131872			
60	NCI	302043		
61	NCI	348081		
62	NCI	302082		
63	NCI	55356		
64	NCI	174536		
65	NCI	642034		
66	NCI	648616		
67	NCI	637724		
68	NCI	35600		
69	NCI	637722		
70	NCI	86089		
71	NCI	211408		
72	NCI	NCI 209954		
73	NCI	209930		
74	NCI	20638		
75	NCI	20631		
76	NCI 113534			
77	NCI	528513		
78	NCI	169595		
79	NCI	139458		
80	NCI	NCI 163639		
81	NCI	372533		
82	NCI	163636		
83	NCI	163635		
84	NCI	163638		
85	NCI	163634		
86	NCI	169590		
87	NCI	268700		
88	NCI	634166		
89	NCI	373853		
90	NCI	376759		
91	NCI	373858		
92	NCI	36945		
PC	MolPort/Specs	AN-329/42613600		

Binding site in the	Aligned domains of hBRR2 ^{T1} and the	RMSD
hBRR2 ^{T1} -hJab1 $^{\Delta C}$ complex	hBRR2 ^{T1} -hJab1 ^{ΔC} complex	[Å]
Pocket 1	WH (NC), HB (NC), RecA2 (CC)	4.12
Pocket 2	RecA1 (NC)	0.49
Pocket 3	RecA2 (CC), WH (CC)	0.66
Pocket 4	RecA1 (CC)	0.51
Pocket 5	RecA1 (NC), WH (NC)	0.73
Pocket 6	IG (NC) (omission of Jab)	0.44

|--|

The hBRR2^{T1} structure (PDB ID 4F91) was aligned to the hBRR2^{T1}-hJab1^{ΔC} complex structure (PDB ID 6S8Q) *via* the indicated domains involved in pocket formation of the ligands identified for the hBRR2^{T1}-hJab1^{ΔC} complex.

Figure S1 Six substructures derived from sulfaguanidine were used as templates for structureguided docking. The substructures were each excised from the three-dimensional pose of sulfaguanidine in the hBRR2^{T1}-sulfaguanidine crystal structure (Fig. 1*b*) without modification of the respective three-dimensional coordinates. The structure images were prepared with DataWarrior (Sander *et al.*, 2015).

Figure S2 Comparison of the sulfaguanidine binding site with the binding site of a known hBRR2 inhibitor. The structure of hBRR2^{T1} in complex with sulfaguanidine was aligned to the structure of hBRR2^{T1} in complex with the previously described inhibitor, compound **3** of (Iwatani-Yoshihara *et al.*, 2017), which was subsequently elaborated to compound **33a** of (Ito *et al.*, 2017). The binding site of sulfaguanidine at the interface of the helicase cassettes is at a distance of around 9 Å to the position of compound **3** of (Iwatani-Yoshihara *et al.*, 2017).

Figure S3 Upper panel, autoradiograms of non-denaturing gels monitoring single time point (2 min or 8 min) hBRR2^{T1}-mediated U4*/U6 di-snRNA unwinding with DMSO (control) or with compound **33a** of (Ito *et al.*, 2017) or with sulfaguanidine (300 μ M or 1 mM). The dashed line separates samples analysed on different gels. U4*, [³²P]-labelled U4 snRNA. Compound **33a** of (Ito *et al.*, 2017) was used as a positive control for a known hBRR2 inhibitor at a concentration of 1 mM. Boil, boiled U4*/U6 di-snRNA substrate, loaded as a control for completely separated strands. Time points 0, samples before the start of the reaction. Lower panel, quantification of the data in the upper panel. Data represent means +/- SD of n = 3 technical replicates. Significance indicators: ns not significant; ***, p ≤ 0.001 ; ****, p ≤ 0.0001 .

C		1			
		3	4 H_N ~ H	5	
	8	9 NH NH	10 States	11	12 , , , , , , , , , , , , ,
13	14 NH-CH5	15	16	17	18 •=
19	20 ° NH2		22	23	24
25 H ₁ CS N OH	26 H ₃ C-NH OF NH2 NH-CH3	27	28 Hac - O H	29 H ₃ C H ₃ C-NH	30
31 HO HO SO SO SO SO SO SO SO SO SO S	32	33 HOUTONH2	34	35	
37 Br	38 • • • • • • • • • • • • • • • • • • •	39 Ho		41	42
43	44				48
49 ••••••••••••••••••••••••••••••••••••	50 Josef Stranger		52 H ₂ C=0 H ₂ C=0 NH ₂		54
55 N N N N N N N N N N N N N N N N N N	56 H ₃ C ⁻⁰ H ^N H _N _S -CH ₃	57 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	58 обсыральный сна ни ми ми обсыраться	59 .	60 HS OF CH3
61	62 500 NH S CH.	63	64 Star CH3	65 * ?	66 <u> </u>
67 ***		69 () ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70	71 Grafis	72 }}
73 John Color			76 76 ^S ^O	77	78
79 HO NH OF OF OF	80, HO WALL CHART	81 HSC CH5	82 HO	83 HO-NH OF SCALE	84 HO Y CI
85 HO HI	86 CH3	87 HO_NHOH	88 Hac H	89 CI N CH3	90 H,C NH S H CI
91 N H N H ₂ CH ₃	92 H ₂ N O ⁵⁶⁰	PC ************************************			

Figure S4 Fragment structures. The structures of 93 sulfaguanidine analogues (obtained from NCI, MolPort and in-house libraries) are shown. PC, precipitated compound (largely insoluble in 100 % DMSO). Structures were generated with ACD/ChemSketch version 12.01.

Figure S5 Electron densities of the fragment hits. $2mF_{o}$ -D F_{c} electron densities covering the bound fragments are shown as meshes at a contour level of 1σ .

Figure S6 hBRR2^{T1}-mediated U4*/U6 di-snRNA unwinding in the presence of fragments. (*a*) Unwinding of the U4*/U6 di-snRNA substrate by hBrr2^{T1} was monitored at single time points (1 min

or 2 min) in the presence of 1 mM of fragments **18**, **24**, **26**, **34**, **39**, **50**, **76**, **78** or **86**. U4*, [³²P]labelled U4 snRNA. The ratio of unwound U4*/U6 di-snRNA was calculated from quantified radioactive band intensities and normalized to the respective values observed in the presence of DMSO. (*b*) Autoradiograms of non-denaturing gels monitoring hBRR2^{T1}-mediated U4*/U6 disnRNA unwinding (2 min time points) at increasing concentrations of fragments **24** (left) or **50** (right). Final concentrations of fragments (0-1000 μ M) are indicated above the gels. Before, control samples without starting the unwinding reaction. Boil, boiled U4*/U6 di-snRNA substrate, loaded as a control for completely separated strands. (*c*) Quantification of the data shown in (*b*) relative to the DMSO control for evaluation of IC₅₀ values.