

Volume 79 (2023)
Supporting information for article:

Ambient temperature structure of phosphoketolase from Bifidobacterium longum determined by serial femtosecond Xray crystallography

Kunio Nakata, Tatsuki Kashiwagi, Naoki Kunishima, Hisashi Naitow, Yoshinori Matsuura, Hiroshi Miyano, Toshimi Mizukoshi, Kensuke Tono, Makina Yabashi, Eriko Nango and So Iwata

## S1. Effectiveness of the light-induced crystallization for generating microcrystals



Figure S1 . Micro-sized crystallization of Bifidobacterium longum phosphoketolase (BIPKT) utilizing the light-induced crystallization plate (Fujifilm Wako). The photographs were taken using an M205C microscope (Leica). (a) Incubation for one day with the irradiation of fluorescent light at $25^{\circ} \mathrm{C}$. Various sized spindle shape microcrystals of BIPKT were observed.
(b) Incubation for one week without the irradiation of fluorescent light at $25^{\circ} \mathrm{C}$ (control). Foggy precipitation of BIPKT was mainly observed.

## S2. Crystal packing of BIPKT crystals

To explore the influence of cryocooling on crystal structures, the crystal packing interactions within BlPKT $_{\text {XFEL }}$, PEP-BlPKT $_{\text {XFEL }}$, and BlPKT $_{\text {cryo }}$ structures were analyzed. As mentioned in section 3.1, the cell lengths of $a, b$, and $c$-axes of the BIPKT cryo crystal (Takahashi et al., 2010) were shrunk by $\approx 1.6 \%, 0.7 \%$, and $3.3 \%$, respectively, when they were compared with those of BIPK $_{\text {XFEL }}$ crystal. In the BIPKT crystal structures, there were three major contact regions (I, II, and III) and three minor contact regions (IV, V, and VI) between neighboring octamers (Table S1, S2).

Among the three major contact regions (Fig. S2(a)), the contact region I of each structure seemed to be significantly diverse in the crystal packing interaction (Fig. S2(b), Table S1). The contact region I mainly existed between protomer C of the original B1PKT octamer at $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and protomer D of the symmetry related octamer at (-X-1, Y-1/2, -Z-1). This interaction contains the translations of $a$ and $c$ axis directions and may be affected by relatively large crystal shrinkage of these directions in the B1PKT cryo structure. The loop at V322-A332 in the protomer D formed the interface of the contact region I of B1PKT crystals (Table S1), and the conformation of this loop in the $\mathrm{BlPKT}_{\text {cryo }}$ structure was apparently different from those in the BIPKT $_{\text {XFEL }}$ and PEP-BIPKT Xfel structures (Fig. 2(b) \$, Fig. S3(b)). The conformation of the loop at V322-A332 in the protomer D was almost identical to those in the other seven protomers in the $\mathrm{BIPKT}_{\text {XFEL }}$ or PEP-BIPKT XFEL structure, whereas it was significantly different from the other seven protomers in the $\mathrm{BlPK}_{\text {cryo }}$ structure. This example of structural distortion at the crystal packing interface demonstrates that the XFEL-SFX method can avoid structural artifacts using the cryogenic treatment.

Structural change due to the difference in crystal packing was also observed at minor contact region IV in the $\mathrm{BIPKT}_{\text {cryo }}$ structure. The loop at E50-E55 in protomer B formed the interface of contact region IV of the BIPKT crystals (Table S1), and $\mathrm{C} \alpha$ atom positions in this loop of the $\mathrm{BlPK}_{\text {cryo }}$ structure was different from those in the $\mathrm{BlPKT}_{\text {XFEL }}$ and PEP-BlPKT XFEL structures (Fig. 2(b) \#, Fig. S3(a)).

The polar interactions of major contact regions II and III were relatively similar among the three BlPKT structures (Table S 1 ). The contact regions II and III mainly existed between protomer A of the original B1PKT octamer and protomer $G$ of the symmetry related octamer at (-X, Y-1/2, Z), and between protomer B of the original BIPKT octamer and protomer E of the symmetry related octamer at $(-X, Y+1 / 2,-Z)$, respectively. From these interactions, BIPKT octamers were positioned along the crystallographic 2-fold screw axis (b-axis) of the BlPKT crystal structure
(Fig. S2(a)). Because the crystal shrink of the $b$-axis was not overly large, the crystal packing interactions of contact regions II and III may not have drastically changed. These contact regions demonstrated several characteristic features. Interestingly, although contact regions II and III were crystallographically independent, the patterns of their eight polar interactions were identical within the $\mathrm{BIPKT}_{\text {xfel }}$ structure (Table S 1 ). Furthermore, these contact regions contained two hydrogen bonds between acidic side chains (E55-D615 and E123-E622). They were also conserved in the $\mathrm{BIPKT}_{\text {cryo }}$, and PEP-BIPKT XfeL structures, implying that these hydrogen bonds between acidic side chains played an important role in crystal packing. However, these hydrogen bonds are expected to destabilize under neutral and alkaline conditions due to deprotonation of the side chain carboxyl groups in the acidic residues. In fact, $\mathrm{BlPKT}_{\text {cryo }}$ (Takahashi et al., 2010), $\mathrm{BlPKT}_{\text {XFEL }}$, and PEP-BIPKT XFFL crystals were deposited under weak acidic conditions ( pH 5 ).

Table S1 Crystal packing polar interactions in BIPKT crystals．

| Contact <br> Region | Original octamer |  |  | Neighboring octamer |  |  |  | Atomic distance（ $\AA$ ）${ }^{* 1}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Residue <br> Name | Atom <br> Name | Chain ID | Residue <br> Name | Atom <br> Name | Chain ID | Symmetry Operator | $\mathrm{BIPK}_{\text {cryo }}$ | $\mathrm{BIPK}_{\text {XFEL }}$ | PEP－ <br> BIPKT $_{\text {XFEL }}$ |
| $1^{* 2}$ | R43 | $\mathrm{N} \varepsilon$ | C | E331 | Oع1 | D | －X－1，Y－1／2，－Z－1 | 2.70 | － | － |
|  |  | N 22 | C |  | O\＆2 | D | －X－1，Y－1／2，－Z－1 | 3.15 | － | － |
|  | S44 | OY | C | R54 | Nr 1 | D | －X－1，Y－1／2，－Z－1 | － | 3.05 | － |
|  | E50 | Oع1 | C | Y793 | On | C | －X－1，Y－1／2，－Z－1 | － | 3.27 | － |
|  | E50 | 0 | C | H59 | Nठ1 | D | －X－1，Y－1／2，－Z－1 | 3.04 | 3.05 | － |
|  |  | O | C |  | C\＆1 | D | －X－1，Y－1／2，－Z－1 | 2.96 | 2.88 | － |
|  | E50 | 0 | C | R328 | $\mathrm{N} \varepsilon$ | D | －X－1，Y－1／2，－Z－1 | 2.85 | － | － |
|  |  | 0 | C |  | N 11 | D | －X－1，Y－1／2，－Z－1 | 3.06 | 3.03 | － |
|  | E55 | Oع1 | C | E331 | N | D | －X－1，Y－1／2，－Z－1 | 2.79 | － | － |
|  | D56 | Oठ1 | C | R54 | $\mathrm{N} \eta 2$ | D | －X－1，Y－1／2，－Z－1 | 2.85 | 3.19 | － |
|  | K118 | N了 | C | E50 | $\mathrm{O} \mathrm{\varepsilon} 1$ | D | －X－1，Y－1／2，－Z－1 | － | 3.05 | － |
|  | E123 | Oع2 | C | E55 | O\＆2 | D | －X－1，Y－1／2，－Z－1 | － | 2.94 | － |
|  | K128 | N了 | C | E50 | Oع1 | D | －X－1，Y－1／2，－Z－1 | 2.60 | － | － |
|  | R131 | Nn2 | C | E331 | O\＆1 | D | －X－1，Y－1／2，－Z－1 | － | － | 3.24 |
|  |  | N22 | C |  | O\＆2 | D | －X－1，Y－1／2，－Z－1 | － | － | 3.18 |
| II＊3 | E392 | Oع2 | A | R43 | Nn2 | G | －X，Y－1／2，－Z | 3.04 | 3.21 | － |
|  | E392 | O\＆1 | A | R54 | Nr 1 | G | －X，Y－1／2，－Z | 3.19 | － | 3.11 |
|  | E392 | Oع1 | A | R328 | Nn2 | G | －X，Y－1／2，－Z | 2.74 | 3.13 | 3.22 |
|  |  | O\＆2 | A |  | N 11 | G | －X，Y－1／2，－Z | 3.17 | 2.95 | 3.24 |
|  | D615 | Oठ1 | A | E55 | Oع2 | G | －X，Y－1／2，－Z | 2.66 | 2.66 | 2.63 |
|  | D615 | Oठ1 | A | R43 | N 11 | G | －X，Y－1／2，－Z | 3.10 | 3.21 | 2.58 |
|  |  | Oठ2 | A |  | N 11 | G | －X，Y－1／2，－Z | 2.96 | 2.66 | 3.29 |
|  |  | Oठ2 | A |  | $\mathrm{N} \varepsilon$ | G | －X，Y－1／2，－Z | － | － | 2.99 |
|  | R618 | N 11 | A | D56 | Oठ1 | G | －X，Y－1／2，－Z | 2.74 | 3.03 | 3.00 |
|  |  | N 22 | A |  | Oठ2 | G | －X，Y－1／2，－Z | 2.90 | － | 3.01 |
|  | R618 | Nn2 | A | P51 | 0 | G | －X，Y－1／2，－Z | 2.95 | 3.00 | 3.05 |
|  | E622 | O\＆1 | A | E123 | O\＆1 | G | －X，Y－1／2，－Z | 2.62 | 2.67 | 2.72 |
|  |  | Oع1 | A |  | O\＆2 | G | －X，Y－1／2，－Z | 3.05 | 3.10 | － |
|  |  | Oع2 | A |  | $\mathrm{O} \mathrm{\varepsilon} 1$ | G | －X，Y－1／2，－Z | 3.01 | － | － |
|  | N807 | Nठ2 | A | E783 | O\＆2 | H | －X，Y－1／2，－Z | － | 3.27 | － |
|  | K810 | N了 | A | E783 | O\＆2 | H | －X，Y－1／2，－Z | 2.94 | － | － |
| III＊3 | E392 | Oع2 | B | R43 | Nn2 | E | －X，Y＋1／2，－Z | － | 3.14 | － |
|  | E392 | Oع1 | B | R54 | N 11 | E | －X，Y＋1／2，－Z | 3.24 | － | － |
|  | E392 | $\mathrm{O} \mathrm{\varepsilon} 1$ | B | R328 | Nワ2 | E | －X，Y＋1／2，－Z | 2.78 | 2.95 | 3.21 |
|  |  | Oع2 | B |  | N 11 | E | －X，Y＋1／2，－Z | － | － | 3.29 |
|  | D615 | Oठ1 | B | E55 | O\＆2 | E | －X，Y＋1／2，－Z | 2.85 | 2.62 | 2.74 |
|  | D615 | Oठ1 | B | R43 | Nn2 | E | －X，Y＋1／2，－Z | － | 2.95 | 2.72 |
|  |  | Оठ2 | B |  | N $\varepsilon$ | E | －X，Y＋1／2，－Z | － | 2.66 | 2.85 |
|  |  | Oठ2 | B |  | Nఇ2 | E | －X，Y＋1／2，－Z | － | 3.22 | 2.88 |
|  | R618 | N71 | B | D56 | Oठ1 | E | －X，Y＋1／2，－Z | 2.68 | 2.92 | 2.86 |
|  |  | N 22 | B |  | Oठ2 | E | －X，Y＋1／2，－Z | 3.06 | － | － |


|  | R618 | $\mathrm{N} \mathrm{n}^{2}$ | B | P51 | 0 | E | -X, Y+1/2, -Z | 2.98 | 2.91 | 3.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | E622 | Oع1 | B | E123 | Oع1 | E | -X, Y+1/2, -Z | 2.62 | 2.68 | 2.25 |
|  |  | Oع1 | B |  | O\&2 | E | -X, Y+1/2, -Z | 3.01 | - | - |
|  |  | Oع2 | B |  | Oع1 | E | -X, Y+1/2, -Z | 3.11 | - | - |
|  | N807 | Nठ2 | B | E783 | Oع2 | F | -X, Y+1/2, -Z | - | 2.88 | - |
| IV | R54 | Nn2 | B | E55 | $\mathrm{O} \mathrm{\varepsilon} 1$ | H | X+1, Y, Z | 3.18 | - | - |
| V | K121 | N了 | D | D638 | Oठ2 | F | -X, Y+1/2, -Z-1 | 2.53 | - | - |
| V | N353 | Nठ2 | D | E693 | O\&2 | F | -X, Y+1/2, -Z-1 | - | - | 2.81 |
| VI | D809 | Oठ2 | D | K593 | $N \zeta$ | G | -X-1, Y-1/2, -Z-1 | - | 2.74 | - |

*1. Polar interactions with distance $<3.3 \AA$ are listed.
*2. Four polar interactions observed in the contact region I of the $\mathrm{BIPKT}_{\mathrm{XFEL}}$ structure disappeared in the $\mathrm{BIPKT}_{\text {cryo }}$ structure and the other four polar interactions emerged within it. In the contact region I of the PEP-BIPKT XFEL structure, only one salt-bridge interaction between the side chains of R131 in the protomer C of the original BIPKT octamer and E331 in the protomer D of the symmetry related octamer existed, which was not conserved in the $\mathrm{BIPKT}_{\text {cryo }}$ and $B 1 P K T_{\text {XFEL }}$ structures.
*3. More than half of the polar interactions in the contact regions II and III of the BIPKT XFEL structure were conserved in those of $\mathrm{BlPKT}_{\text {cryo }}$ and PEP-BlPK XfFel $_{\text {structures. }}$

Table S2 Crystal packing contact areas in BIPKT crystals.

| Contact <br> Region | Original octamer | Neighboring octamer |  | Contact area ( $\AA^{2}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Chain ID | Chain ID | Symmetry Operator | $\mathrm{BIPKT}_{\text {cryo }}$ | BIPKT ${ }_{\text {XFEL }}$ | PEP- BIPKT ${ }_{\text {XFEL }}$ |
| I | C, D | D, C | -X-1, Y-1/2, -Z-1 | 497.0 | 493.1 | 327.1 |
| II | A | G, H | -X, Y-1/2, -Z | 770.0 | 735.9 | 753.7 |
| III | B | E, F | -X, Y+1/2, -Z | 784.2 | 734.5 | 761.1 |
| IV | A, B | G, H | X+1, Y, Z | 209.9 | 92.0 | 87.5 |
| V | D | F | -X, Y+1/2, -Z-1 | 172.3 | 0.0 | 79.9 |
| VI | D | G | -X-1, Y-1/2, -Z-1 | 115.7 | 59.6 | 48.1 |

(a)
$(-X-1, Y+1 / 2,-Z-1)$

(b)


Figure S2 Crystal packing of Bifidobacterium longum phosphoketolase (B1PKT) crystals. (a) Overall view of crystal packing of the BIPKT holoenzyme structure solved by serial femtosecond crystallography (BIPKT ${ }_{\text {XFEL }}$ structure). Ribbon models of five BIPKT octamers are shown with their symmetry operators. Octamers except for the original positioned at ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) are drawn with 0.7 transparency. Each protomer is colored as per Fig. 2(a). The major contact regions I, II, and III (Table S1, S2) are clarified with gray, blue, and red dotted circles, respectively. (b) Crystal packing interactions within the contact region I (Table S 1 ). The $\mathrm{C} \alpha$ trace models of the original dimer CD at $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and the symmetry related dimer CD at (-X-1, $\mathrm{Y}-1 / 2,-\mathrm{Z}-1$ ) are demonstrated on the bottom side with full transparency and on the top side with 0.7 transparency, respectively. The packing interaction models of the BIPKT holoenzyme structure solved by cryogenic X-ray crystallography (PDB entry 3ai7; Takahashi et al., 2010), the $\mathrm{BIPKT}_{\text {XFEL }}$ structure, and the B1PKT/phosphoenol pyruvate (PEP) complex structure solved by serial femtosecond crystallography are colored blue, green, and pink, respectively, and are superimposed with the original dimer CD . The side chains of the amino acid residues which participate in the polar interactions of each structure (Table S1) are drawn by stick models.


Figure S3 Displacements of $\mathrm{C} \alpha$ coordinates between the Bifidobacterium longum phosphoketolase (BlPKT) structures at the regions effected by the crystal packing. Two out of three BIPKT structures (the BlPKT holoenzyme structure solved by serial femtosecond crystallography [BIPKT ${ }_{\text {XFEL }}$ structure], the BIPKT/phosphoenol pyruvate [PEP] complex structure solved by serial femtosecond crystallography [PEP-BlPKT ${ }_{\text {XEFL }}$ structure], and the B1PKT holoenzyme structure solved by cryogenic X-ray crystallography [PDB entry 3ai7; Takahashi et al., 2010] [ $\mathrm{BlPKT}_{\text {cryo }}$ structure]) are selected and superimposed using all $\mathrm{C} \alpha$ coordinates. (a) Magnified view of $\mathrm{C} \alpha$ displacements around the crystal packing contact region IV of the protomer B (Fig. 2(b) \#, Table S1). (b) Magnified view of $\mathrm{C} \alpha$ displacements around a part of the crystal packing contact region I of the protomer D (Fig. 2(b) \$, Table S1).

