

Volume 79 (2023)

Supporting information for article:

Ambient temperature structure of phosphoketolase from *Bifidobacterium longum* determined by serial femtosecond Xray crystallography

Kunio Nakata, Tatsuki Kashiwagi, Naoki Kunishima, Hisashi Naitow, Yoshinori Matsuura, Hiroshi Miyano, Toshimi Mizukoshi, Kensuke Tono, Makina Yabashi, Eriko Nango and So Iwata

S1. Effectiveness of the light-induced crystallization for generating microcrystals

Figure S1 . Micro-sized crystallization of *Bifidobacterium longum* phosphoketolase (BIPKT) utilizing the light-induced crystallization plate (Fujifilm Wako). The photographs were taken using an M205C microscope (Leica). (a) Incubation for one day with the irradiation of fluorescent light at 25°C. Various sized spindle shape microcrystals of BIPKT were observed.
(b) Incubation for one week without the irradiation of fluorescent light at 25°C (control). Foggy precipitation of BIPKT was mainly observed.

S2. Crystal packing of BIPKT crystals

To explore the influence of cryocooling on crystal structures, the crystal packing interactions within BlPKT_{XFEL}, PEP-BlPKT_{XFEL}, and BlPKT_{cryo} structures were analyzed. As mentioned in section 3.1, the cell lengths of *a*, *b*, and *c*-axes of the BlPKT_{cryo} crystal (Takahashi *et al.*, 2010) were shrunk by $\approx 1.6\%$, 0.7%, and 3.3%, respectively, when they were compared with those of BlPKT_{XFEL} crystal. In the BlPKT crystal structures, there were three major contact regions (I, II, and III) and three minor contact regions (IV, V, and VI) between neighboring octamers (Table S1, S2).

Among the three major contact regions (Fig. S2(a)), the contact region I of each structure seemed to be significantly diverse in the crystal packing interaction (Fig. S2(b), Table S1). The contact region I mainly existed between protomer C of the original BIPKT octamer at (X, Y, Z) and protomer D of the symmetry related octamer at (-X-1, Y-1/2, -Z-1). This interaction contains the translations of *a* and *c* axis directions and may be affected by relatively large crystal shrinkage of these directions in the BIPKT_{cryo} structure. The loop at V322–A332 in the protomer D formed the interface of the contact region I of BIPKT crystals (Table S1), and the conformation of this loop in the BIPKT_{cryo} structure was apparently different from those in the BIPKT_{XFEL} and PEP-BIPKT_{XFEL} structures (Fig. 2(b) \$, Fig. S3(b)). The conformation of the loop at V322–A332 in the protomer D was almost identical to those in the other seven protomers in the BIPKT_{XFEL} or PEP-BIPKT_{XFEL} structure, whereas it was significantly different from the other seven protomers in the BIPKT_{cryo} structure. This example of structural distortion at the crystal packing interface demonstrates that the XFEL-SFX method can avoid structural artifacts using the cryogenic treatment.

Structural change due to the difference in crystal packing was also observed at minor contact region IV in the BlPKT_{cryo} structure. The loop at E50–E55 in protomer B formed the interface of contact region IV of the BlPKT crystals (Table S1), and C α atom positions in this loop of the BlPKT_{cryo} structure was different from those in the BlPKT_{XFEL} and PEP-BlPKT_{XFEL} structures (Fig. 2(b) #, Fig. S3(a)).

The polar interactions of major contact regions II and III were relatively similar among the three BIPKT structures (Table S1). The contact regions II and III mainly existed between protomer A of the original BIPKT octamer and protomer G of the symmetry related octamer at (-X, Y-1/2, -Z), and between protomer B of the original BIPKT octamer and protomer E of the symmetry related octamer at (-X, Y+1/2, -Z), respectively. From these interactions, BIPKT octamers were positioned along the crystallographic 2-fold screw axis (*b*-axis) of the BIPKT crystal structure

(Fig. S2(a)). Because the crystal shrink of the *b*-axis was not overly large, the crystal packing interactions of contact regions II and III may not have drastically changed. These contact regions demonstrated several characteristic features. Interestingly, although contact regions II and III were crystallographically independent, the patterns of their eight polar interactions were identical within the BIPKT_{XFEL} structure (Table S1). Furthermore, these contact regions contained two hydrogen bonds between acidic side chains (E55–D615 and E123–E622). They were also conserved in the BIPKT_{cryo}, and PEP-BIPKT_{XFEL} structures, implying that these hydrogen bonds between acidic side chains played an important role in crystal packing. However, these hydrogen bonds are expected to destabilize under neutral and alkaline conditions due to deprotonation of the side chain carboxyl groups in the acidic residues. In fact, BIPKT_{cryo} (Takahashi *et al.*, 2010), BIPKT_{XFEL}, and PEP-BIPKT_{XFEL} crystals were deposited under weak acidic conditions (pH 5).

Comtoot	Ori	Original octamer			Neighboring octamer			Atomic distance (Å) *1		
Contact	Residue Name	Atom	Chair ID Resid	Residue	esidue Atom				דייחום	PEP-
Region		Name	Chain ID	Name	Name	Chain ID	Symmetry Operator	BIPK I cryo	BIPK I XFEL	BIPKT _{XFEL}
	R43	Νε	С	E331	Οε1	D	-X-1, Y-1/2, -Z-1	2.70	-	-
		Νη2	С		Οε2	D	-X-1, Y-1/2, -Z-1	3.15	-	-
	S44	Ογ	С	R54	Νη1	D	-X-1, Y-1/2, -Z-1	-	3.05	-
	E50	Οε1	С	Y793	Οη	С	-X-1, Y-1/2, -Z-1	-	3.27	-
	E50	0	С	H59	Νδ1	D	-X-1, Y-1/2, -Z-1	3.04	3.05	-
	200	0	С	1100	Cɛ1	D	-X-1, Y-1/2, -Z-1	2.96	2.88	-
	E50	0	С	R328	Νε	D	-X-1, Y-1/2, -Z-1	2.85	-	-
I *2		0	С		Νη1	D	-X-1, Y-1/2, -Z-1	3.06	3.03	-
	E55	Οε1	С	E331	Ν	D	-X-1, Y-1/2, -Z-1	2.79	-	-
	D56	Οδ1	С	R54	Νη2	D	-X-1, Y-1/2, -Z-1	2.85	3.19	-
	K118	Νζ	С	E50	Οε1	D	-X-1, Y-1/2, -Z-1	-	3.05	-
	E123	Οε2	С	E55	Οε2	D	-X-1, Y-1/2, -Z-1	-	2.94	-
	K128	Nζ	С	E50	Οε1	D	-X-1, Y-1/2, -Z-1	2.60	-	-
	R131	Νη2	С	F331	Οε1	D	-X-1, Y-1/2, -Z-1	-	-	3.24
	_	Νη2	С		Οε2	D	-X-1, Y-1/2, -Z-1	-	-	3.18
	E392	Οε2	A	R43	Νη2	G	-X, Y-1/2, -Z	3.04	3.21	-
	E392	Οε1	A	R54	Νη1	G	-X, Y-1/2, -Z	3.19	-	3.11
	E392	Οε1	A	R328	Νη2	G	-X, Y-1/2, -Z	2.74	3.13	3.22
		Οε2	A		Νη1	G	-X, Y-1/2, -Z	3.17	2.95	3.24
	D615	Οδ1	A	E55	Οε2	G	-X, Y-1/2, -Z	2.66	2.66	2.63
		Οδ1	A	R43	Nη1	G	-X, Y-1/2, -Z	3.10	3.21	2.58
	D615	Οδ2	A		Nη1	G	-X, Y-1/2, -Z	2.96	2.66	3.29
II *3		Οδ2	A		Νε	G	-X, Y-1/2, -Z	-	-	2.99
	R618	Nη1	A	D56	Οδ1	G	-X, Y-1/2, -Z	2.74	3.03	3.00
		Νη2	A		Οδ2	G	-X, Y-1/2, -Z	2.90	-	3.01
	R618	Νη2	A	P51	0	G	-X, Y-1/2, -Z	2.95	3.00	3.05
	E622	Οε1	A		Οε1	G	-X, Y-1/2, -Z	2.62	2.67	2.72
		Οε1	A	E123	Οε2	G	-X, Y-1/2, -Z	3.05	3.10	-
		Οε2	A		Οε1	G	-X, Y-1/2, -Z	3.01	-	-
	N807	Νδ2	A	E783	Οε2	Н	-X, Y-1/2, -Z	-	3.27	-
	K810	Nζ	A	E783	Οε2	H	-X, Y-1/2, -Z	2.94	-	-
	E392	Οε2	В	R43	Νη2	E	-X, Y+1/2, -Z	-	3.14	-
	E392	Οε1	В	R54	Nη1	E	-X, Y+1/2, -Z	3.24	-	-
	E392	Οε1	В	R328	Νη2	E	-X, Y+1/2, -Z	2.78	2.95	3.21
		Οε2	В		Νη1	E	-X, Y+1/2, -Z	-	-	3.29
III *3	D615	Οδ1	В	E55	Οε2	E	-X, Y+1/2, -Z	2.85	2.62	2.74
	D615	051	В	R43	Νη2	Ē	-X, Y+1/2, -Z	-	2.95	2.72
		062	В		NE NE C		-X, Y+1/2, -Z	-	2.66	2.85
		062	В		Nη2		-X, Y+1/2, -Z	-	3.22	2.88
	R618	Nη1	В	D56	051	Ē	-X, Y+1/2, -Z	2.68	2.92	2.86
		Νη2	В		Οδ2	E	-X, Y+1/2, -Z	3.06	-	-

Table S1Crystal packing polar interactions in BIPKT crystals.

	R618	Νη2	В	P51	0	E	-X, Y+1/2, -Z	2.98	2.91	3.00
		Οε1	В		Οε1	E	-X, Y+1/2, -Z	2.62	2.68	2.25
	E622	Οε1	В	E123	Οε2	E	-X, Y+1/2, -Z	3.01	-	-
		Οε2	В		Οε1	E	-X, Y+1/2, -Z	3.11	-	-
	N807	Νδ2	В	E783	Οε2	F	-X, Y+1/2, -Z	-	2.88	-
IV	R54	Νη2	В	E55	Οε1	Н	X+1, Y, Z	3.18	-	-
V	K121	Νζ	D	D638	Οδ2	F	-X, Y+1/2, -Z-1	2.53	-	-
	N353	Νδ2	D	E693	Οε2	F	-X, Y+1/2, -Z-1	-	-	2.81
VI	D809	Οδ2	D	K593	Nζ	G	-X-1, Y-1/2, -Z-1	-	2.74	-

*1. Polar interactions with distance <3.3 Å are listed.

*2. Four polar interactions observed in the contact region I of the $BIPKT_{XFEL}$ structure disappeared in the $BIPKT_{eryo}$ structure and the other four polar interactions emerged within it. In the contact region I of the PEP- $BIPKT_{XFEL}$ structure, only one salt-bridge interaction between the side chains of R131 in the protomer C of the original BIPKT octamer and E331 in the protomer D of the symmetry related octamer existed, which was not conserved in the BIPKT_{eryo} and BIPKT_{XFEL} structures.

*3. More than half of the polar interactions in the contact regions II and III of the BlPKT_{XFEL} structure were conserved in those of BlPKT_{cryo} and PEP-BlPKT_{XFEL} structures.

ſ	Contact	Original octamer	Neighbo	oring octamer	Contact area (Ų)			
	Region	Chain ID	Chain ID	Symmetry Operator	BIPKT _{cryo}		PEP- BIPKT _{XFEL}	
I	I	C, D	D, C	-X-1, Y-1/2, -Z-1	497.0	493.1	327.1	
I	II	A	G, H	-X, Y-1/2, -Z	770.0	735.9	753.7	
I	III	В	E, F	-X, Y+1/2, -Z	784.2	734.5	761.1	
I	IV	A, B	G, H	X+1, Y, Z	209.9	92.0	87.5	
Ī	V	D	F	-X, Y+1/2, -Z-1	172.3	0.0	79.9	
I	VI	D	G	-X-1, Y-1/2, -Z-1	115.7	59.6	48.1	

Table S2	Crystal	packing of	contact areas i	n BlPKT	crystals.
----------	---------	------------	-----------------	---------	-----------

Figure S2 Crystal packing of *Bifidobacterium longum* phosphoketolase (BIPKT) crystals. (*a*) Overall view of crystal packing of the BIPKT holoenzyme structure solved by serial femtosecond crystallography (BIPKT_{XFEL} structure). Ribbon models of five BIPKT octamers are shown with their symmetry operators. Octamers except for the original positioned at (X, Y, Z) are drawn with 0.7 transparency. Each protomer is colored as per Fig. 2(a). The major contact regions I, II, and III (Table S1, S2) are clarified with gray, blue, and red dotted circles, respectively. (*b*) Crystal packing interactions within the contact region I (Table S1). The C α trace models of the original dimer CD at (X, Y, Z) and the symmetry related dimer CD at (-X-1, Y-1/2, -Z-1) are demonstrated on the bottom side with full transparency and on the top side with 0.7 transparency, respectively. The packing interaction models of the BIPKT holoenzyme structure solved by cryogenic X-ray crystallography (PDB entry 3ai7; Takahashi *et al.*, 2010), the BIPKT_{XFEL} structure, and the BIPKT/phosphoenol pyruvate (PEP) complex structure solved by serial femtosecond crystallography are colored blue, green, and pink, respectively, and are superimposed with the original dimer CD. The side chains of the amino acid residues which participate in the polar interactions of each structure (Table S1) are drawn by stick models.

Figure S3 Displacements of C α coordinates between the *Bifidobacterium longum* phosphoketolase (BIPKT) structures at the regions effected by the crystal packing. Two out of three BIPKT structures (the BIPKT holoenzyme structure solved by serial femtosecond crystallography [BIPKT_{XFEL} structure], the BIPKT/phosphoenol pyruvate [PEP] complex structure solved by serial femtosecond crystallography [PEP-BIPKT_{XEFL} structure], and the BIPKT holoenzyme structure solved by cryogenic X-ray crystallography [PDB entry 3ai7; Takahashi *et al.*, 2010] [BIPKT_{cryo} structure]) are selected and superimposed using all C α coordinates. (*a*) Magnified view of C α displacements around the crystal packing contact region IV of the protomer B (Fig. 2(b) #, Table S1). (*b*) Magnified view of C α displacements around a part of the crystal packing contact region I of the protomer D (Fig. 2(b) \$, Table S1).