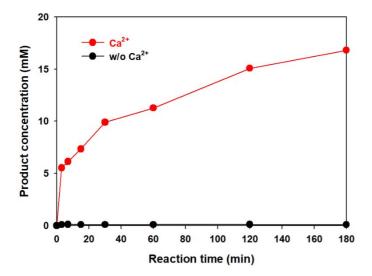


Volume 79 (2023)


Supporting information for article:

Structural and functional characterization of a thermostable secretory phospholipase A2 from Sciscionella marina and its application in liposome biotransformation

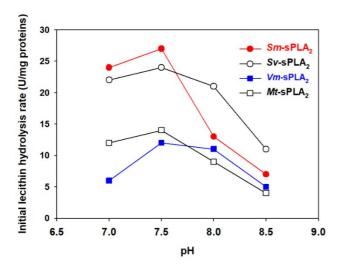
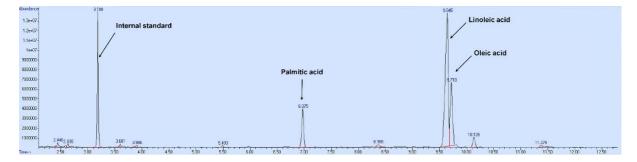
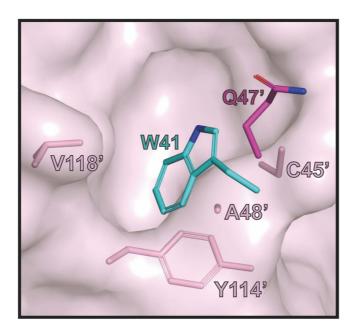

Bu-Gyeong Kang, Seung-Yeon Kwon, Hyo-Ran Lee, Yeji Hwang, So-Yeon Youn, Chulhong Oh, Jin-Byung Park and Sun-Shin Cha

Table S1	Primers used in cloning of Sm-sPLA ₂ and its var	iant


Name	Sequence $(5' \rightarrow 3')$	Description
Sm-sPLA2_NcoI_F	CCGGCGATGGCCATGGAGAGCATCGAAAGCATCAC	To construct
Sm-sPLA ₂ _XhoI_R	GGTGGTGCTCGAGACTGCCGAATTTGCGGAC	ESM1
Sm-sPLA2_NcoI_F	AGGAGATATACCATGGAGAGCATCGAAAGCATCACCG	To construct
Sm-sPLA ₂ _XhoI_R	GGTGGTGCTCGAGACTGCCGAATTTGCGGACC	ESM2, ESM3
Sm-sPLA ₂ _W41H_F	GATTCCTGCTCCCATGCCCCGGACAAAC	To construct
Sm-sPLA ₂ _W41H_R	GTTTGTCCGGGGCATGGGAGCAGGAATC	ESM_W41H
Mt-sPLA2_NcoI_F	CCGGCGATGGCCATGGCGCTCACCCCCGAGCA	To construct
<i>Mt</i> -sPLA ₂ _XhoI_R	GGTGGTGCTCGAGCCCGACCGCGTGGCG	EMT
Vm-sPLA ₂ _Ncol_F	CCGGCGATGGCCATGGCCGTCACTCCGGCACAG	To construct
Vm-sPLA ₂ _XhoI_R	GGTGGTGGTCGAGGAGTCGGGCGTGGCGCTC	EVM


Figure S1 Effects of calcium ions on soy lecithin hydrolysis of *Sm*-sPLA₂. The biotransformations were performed by *Sm*-sPLA₂ (0.1 mg/mL) at pH 7.5 and 50 °C using soybean lecithin emulsion (crude soy lecithin concentration: 20 g/L) as substrate. The calcium ions (Ca²⁺) were added to 6 mM into the reaction medium (50 mM Tris-HCl buffer). The product (i.e., lysolecithin (2)) concentrations were calculated based on the free fatty acid (3, 4, and palmitic acid) concentrations, which had been produced from soy lecithin (Fig. 1).

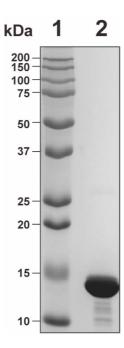

Figure S2 Effects of pH on soy lecithin hydrolysis of PLA₂s. The soy lecithin emulsion (crude soy lecithin concentration: 50 g/L) was subjected to hydrolysis by *Sv*-sPLA₂, *Sm*-sPLA₂, *Mt*-sPLA₂, and *Vm*-sPLA₂ at 50 °C in 50 mM Tris-HCl buffer.

Figure S3 The free fatty acids (linoleic acid, oleic acid, and palmitic acid), which were produced from soy lecithin, were analyzed by GC/MS using 0.5 % dodecanoic acid as internal standard.

Figure S4 The hydrophobic pocket lined by Cys45', Ala48', Tyr114', and Val118' of *Sv*-sPLA₂ (pink). For this figure, only Trp41 of *Sm*-sPLA₂ (cyan) and Gln47' of *Sv*-sPLA₂ (magenta) are shown with *Sv*-sPLA₂ in surface representation.

Figure S5 The SDS-PAGE result to show the purity and soluble expression of *Sm*-sPLA₂. Lane 1: Protein size marker. Lane 2: The final *Sm*-sPLA₂ sample obtained after the purification.