

Volume 79 (2023)

Supporting information for article:

Structural insight into the hydrolase and synthase activities of an alkaline α -galactosidase from *Arabidopsis* from complexes with substrate/product

Phimonphan Chuankhayan, Ruey-Hua Lee, Hong-Hsiang Guan, Chein-Chih Lin, Nai-Chi Chen, Yen-Chieh Huang, Masato Yoshimura, Atsushi Nakagawa and Chun-Jung Chen

Figure S1 Thin-layer chromatography (TLC) analysis. Hydrolysis reaction of AtAkαGal3, compared with rice raffinose synthase, toward raffinose as a substrate. Lane 1: standard (std.) galactose (Gal); lane 2: std. sucrose (Suc); lane 3: std. raffinose (Raf); lane 4: std. stachyose (Sta); lane 5: raffinose incubated with rice raffinose synthase; lane 6: raffinose incubated with AtAkαGal3.

Figure S2 Crystal structure of AtAkαGal3. (A) Two AtAkαGal3 molecules (blue and orange) exist in one asymmetric unit. (B) The overall structure of a functional monomer is composed of three domains: the N-terminal domain (yellow), the catalytic domain (green) and the C-terminal domain (magenta). Disordered residues 103-119 and 254-263 without defined electron density are shown in red dashed lines.

Figure S3 Alignment of the catalytic region of acidic a-galactosidases with known structures. PDB 1UAS: α -galactosidase from *Oryza sativa*, 1R46: human α -galactosidase, 1KTB: chicken α -N-acetylgalactosaminidase, 6F4C: α -galactosidase from *Nicotiana benthamiana*, 4NFJ: α -galactosidase from *Bacteoroides fragilis*, 3LRK: α -galactosidase from *Saccharomyces cerevisiae*, 1T0O: α -galactosidase from *Trichoderma reesei*.

	380	390	4 4 Q	450
AtAkaGa13	GVD <mark>GVK</mark> VDV	QCVLETL	QAAVIRAS	DDFYP
Alk_Oryza_sativa	GID <mark>GVK</mark> V <mark>D</mark> V	QNIL <mark>E</mark> TL	RSAVVRASI	DDFWP
Alk_I_Melon	GVD <mark>GVK</mark> VDV	QNILETL	RNAVIRASI	DDFWP
Alk_Tomato	GID <mark>GVK</mark> V <mark>D</mark> V	QNIL <mark>E</mark> TL	RSAVIRASI	DDFWP
A.thaliana_seed_imbibition	GVD <mark>GVK</mark> VDV	QNIL <mark>E</mark> TL	KTAVIRASI	DDFWP
Rice_seed_imbibition	GVD <mark>GVK</mark> VDA	QNIIETL	QTAVVRASI	DDFYP
Raf_II_Melon	GID <mark>GVK</mark> VDV	QNIIETL	QTAVVRASI	DDYYP
Raf_Soybean	GVD <mark>GVK</mark> VDV	QNII <mark>E</mark> TL	QTAIVRASI	DDFYP
Raf_Oryza_sativa	GID <mark>GVK</mark> VDV	IHLL <mark>E</mark> MV	AVALG <mark>R</mark> VGI	DDFWC
Raf_Cucumis	GID <mark>GVK</mark> IDV	IHLL <mark>E</mark> ML	AISLGRVGI	DDFWC
STA_Prunus	GITGVKVDV	IHTLEYV	QISIG <mark>R</mark> VGI	DDFWF
STA_Citrus	GITGVKVDV	IHTLDYV	QISMGRVG	DDFWF
	K X D		R x x D D	

Figure S4 Alignment of the catalytic region of alkaline α -galactosidase and RFO synthesis from different plants. There are AtAkαGal3, alkaline α-galactosidases from rice (AF251068) (Alk_Oryza_sativa), melon (AAM75139) (Alk_I_Melon), tomato (NP 001234763) (Alk Tamato), and seed imbibition protein from AtAkaGal1 (Atlg55740) (A.thaliana seed imbibition), and rice (ABF99470) (Rice seed imbibition), RFO synthases from melon (NP 001284472) (Raf_II_Melon), soybean (XP_006576826) (Raf_Soybean), rice (XP_015621501) (Raf_Oryza_sativa), cucumber (AAD02832) (Raf_cucumis), yoshino cherry (PQQ02596) (STA_Prunus) and clementine (XP_006444535) (STA_Citrus), showed two conserved motifs of nucleophile: 381KVD383 and 443RxxDD447. The residue numbers are based on the AtAkaGal3 sequence.

Figure S5 Structural comparison of the mutant D383 and wild-type in complex with galactose. Superimposed two galactose moieties of the D383A mutant (green stick) and wild-type AtAkaGal3 (yellow stick) show that the O1 hydroxyl group at the C1-carbon are in α - and β -anomeric forms, respectively.