

Volume 79 (2023)

Supporting information for article:

A scoring function for the prediction of protein complex interfaces based on the neighborhood preferences of amino acids

Mulpuri Nagaraju and Haiguang Liu

Decoys Sets	Total number	Number of	Percentage of acceptable models				
(15 complexes)	of accepted	selected	CAPRI	Nepre	iNepre		
	CAPRI models	models		1	1		
	in $X \times 15$						
	predictions						
Т (29,30,32,35,		1	0.0	0.1	0		
36,37,38,39,40,		5	0.3	0.2	0.4		
41,46,47,50,53,	863	10	0.5	0.7	0.8		
54)		20	1.1	1.2	2.4		
		50	3.6	3.7	5.9		

Table S1Performance of scoring functions, CAPRI, Nepre and iNepre on CAPRI decoy sets.

Decoy Sets	Number of	Number of	Number	r of acceptable	models
(Predictions	accepted	selected models	CAPRI	Nepre	iNepre
X)	CAPRI				
	models in X				
	predictions				
T29	87	1	-	-	-
(2083)		5	-	-	-
		10	-	-	1
		20	-	-	1
		50	-	3	1
T30	2	1	-	-	-
(1343)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	-	-	-
T32	12	1	-	-	-
(599)		5	-	-	-
		10	-	1	-
		20	2	1	1
		50	3	4	2
T35	3	1	-	-	-
(499)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	-	-	-
T36	NO	1	-	-	-
(309)		5	-	-	-
		10	-	-	-
		20	-	-	-

Table S2Performance of scoring functions on individual CAPRI decoy sets.

		50	-	-	-
T37	42	1	-	-	-
(1500)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	-	-	-
T38	NO	1	-	-	-
(899)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	-	-	-
T39	1	1	-	-	-
(1400)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	-	-	-
T40	189	1	-	-	-
(2180)		5	-	-	1
		10	-	-	1
		20	1	-	4
		50	4	-	16
T41	249	1	-	-	-
(1200)		5	2	-	1
		10	2	-	2
		20	4	-	5
		50	12	-	15
T46	24	1	-	-	-
(1699)		5	-	-	-
		10	-	-	-
		20	-	-	-

Г

_

Supporting information, sup-4

		50	-	-	-
T47	26	1	-	-	-
(1051)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	2	-	-
T50	97	1	-	-	-
(1451)		5	1	-	1
		10	2	1	1
		20	3	2	3
		50	6	10	3
T53	113	1	-	1	-
(1400)		5	-	2	1
		10	-	4	2
		20	-	7	7
		50	3	15	14
T54	18	1	-	-	-
(1400)		5	-	-	-
		10	-	-	-
		20	-	-	-
		50	1	-	-

Table S3 Performance of HADDOCK and ZDOCK scoring energies vs RMSD with respect to native structure. In HADDOCK, interfacial RMSD (i-RMSD) and ligand RMSD (l-RMSD) are taken, whereas in ZDOCK top scored 1000 complexes are considered out of 2000 complexes generated in ZDOCK procedure and RMSD for these complexes are calculated based on native structure. RMSD cutoff 2.5, 3.5 and 5Å are used to identify top rank models in ZDOCK decoy datasets.

	HADI	DOCK	ZD	OCK S	et-II	ZDO	OCK Se	et-I		
Number of selected	Decoy dataset (25)		Decoy dataset			Decoy dataset				
models				(135)			(43)			
	i-	1-	2.5Å	3.5Å	5Å	2.5Å	3.5Å	5Å		
	RMSD	RMSD								
1	3	0	4	6	11	0	0	0		
5	4	0	6	10	18	0	0	0		
10	5	2	7	12	21	0	0	1		
20	6	3	7	13	24	0	1	1		
50	7	3	7	14	28	0	1	1		

Table S4 A benchmark study on interfacial residue cutoff distance (at 4Å, 5Å and 6Å) in iNepre scoring function, in all cases amino acid residues neighborhood distance cutoff is 6.0 Å.

	HADDOCK		GI	RAMN	1-X	ZDOCK		Set-II	ZDOCK Set-I		Set-I	
Number of selected	De	coy da	ataset	Dee	coy da	taset	Decoy d		ataset	Decoy dataset		
models	(25)			(43)		(130)))	(36)			
	4Å	5Å	6Å	4Å	5Å	6Å	4Å	5Å	6Å	4Å	5Å	6Å
1	1	9	13	2	5	13	6	26	38	2	4	12
5	4	9	13	7	8	15	11	31	51	3	6	13
10	6	10	14	8	10	17	17	39	59	5	6	14
20	7	12	15	11	16	18	28	49	69	7	7	16
50	7	12	17	25	22	25	65	71	87	16	14	21

Table S5	Testing the convergence of interfacial amino acid residue pair data points collected at 6.0 Å
interfacial di	stance cutoff. Amino acid – Amino acid data points are considered at 50%, 75% and 100% to
generate ene	rgy matrix file, in all cases amino acid residues neighborhood distance cutoff is 6.0 Å.

	Н	ADDO	CK	GRAMM-X		ZDOCK Set-II		ZDOCK Set-I				
Number of	De	Decoy dataset		Decoy dataset		De	Decoy dataset		Decoy dataset			
selected		(25)			(43)		(130)			(36)		
models		% Dat	a	% Data		a	% Data			% Data		
	50%	75%	100%	50%	75%	100%	50%	75%	100%	50%	75%	100%
1	9	12	13	11	12	13	38	37	38	8	10	12
5	12	13	13	14	16	15	46	47	51	10	13	13
10	12	14	14	17	18	17	53	54	59	11	13	14
20	12	15	15	20	21	18	67	67	69	15	15	16
50	15	18	17	26	26	25	84	86	87	20	23	21

Complex	Category ^a	Complex	Category ^a	Complex	Category ^a
1AHW_AB:C	AA	1TMQ_A:B	EI	1GPW_A:B	OX
1DQJ_AB:C	AA	1UDI_E:I	EI	1H9D_A:B	OX
1JPS_HL:T	AA	1US7_A:B	ER	1HCF_AB:X	OR
1MLC_AB:E	AA	1WDW_BD:A	ER	1HE1_C:A	OG
1VFB_AB:C	AA	1YVB_A:I	EI	1I4D_D:AB	OG
1WEJ_HL:F	AA	1Z5Y_D:E	ES	1J2J_A:B	OG
2FD6_HL:U	AA	2A9K_A:B	ES	1K74_AB:DE	OR
2I25_N:L	AS	2ABZ_B:E	EI	1KAC_A:B	OR
2VIS_AB:C	AA	2AYO_A:B	ER	1KLU_AB:D	OX
2VXT_HL:I	AA	2B42_B:A	EI	1KTZ_A:B	OR
2W9E_HL:A	AA	2GAF_D:A	ER	1KXP_A:D	OX
3EOA_LH:I	AA	2J0T_A:D	EI	1M27_AB:C	OX
3MXW_LH:A	AA	2MTA_HL:A	ES	1ML0_AB:D	OR
3RVW_CD:A	AA	208V_A:B	ES	10FU_XY:A	OX
4DN4_LH:M	AA	200B_A:B	ES	1PVH_A:B	OR
4G6M_HL:A	AA	200R_AB:C	ER	1QA9_A:B	OX
1AVX_A:B	EI	2PCC_A:B	ES	1RLB_ABCD:E	OX
1AY7_A:B	EI	2SIC_E:I	EI	1RV6_VW:X	OR
1BUH_A:B	EI	2SNI_E:I	EI	1S1Q_A:B	OX
1BVN_P:T	EI	2UUY_A:B	EI	1SBB_A:B	OR
1CLV_A:I	EI	2YVJ_A:B	ER	1T6B_X:Y	OR
1D6R_A:I	EI	3A4S_A:D	EI	1XD3_A:B	OX
1DFJ_E:I	EI	3K75_D:B	ER	1XU1_ABD:T	OR
1E6E_A:B	ES	3PC8_A:C	ER	1Z0K_A:B	OG
1EAW_A:B	EI	3SGQ_E:I	EI	1ZHH_A:B	OR
1EWY_A:C	ES	3VLB_A:B	EI	1ZHI_A:B	OX
1EZU_C:AB *	EI	4CPA_A:I	EI	2A5T_A:B	OX
1F34_A:B	EI	4H03_A:B	ES	2AJF_A:E	OR
1F51_AB:E	ER	4HX3_BD:A	EI	2B4J_AB:C	OX
1FLE_E:I	EI	7CEI_A:B	EI	2BTF_A:P	OX
1GL1_A:I	EI	1A2K_C:AB	OG	2FJU_B:A	OG

Table S6 Protein complexes used for the ZDOCK Set-II data set.

1GLA_G:F	ER	1AK4_A:D	OX	2G77_A:B	OG
1GXD_A:C	EI	1AKJ_AB:DE	OX	2GTP_A:D	OG
1HIA_AB:I	EI	1AZS_AB:C	OG	2HLE_A:B	OR
1JTD_B:A	EI	1E96_A:B	OG	2HQS_A:H	OX
1JTG_B:A	EI	1EFN_B:A	OX	2X9A_D:C	OR
1MAH_A:F	EI	1FCC_AB:C	OX	3BIW_A:E	OX
10C0_A:B	ER	1FFW_A:B	OX	3BP8_AB:C	OX
10PH_A:B	EI	1FQJ_A:B	OG	3D5S_A:C	OX
1PPE_E:I	EI	1GHQ_A:B	OR	3H2V_A:E	OX

Complex	Category ^a	Complex	Category ^a	Complex	Category ^a
3EO1_AB:CF	AA	2Z0E_A:B	ER	1WQ1_R:G *	OG
3G6D_LH:A	AA	4FZA_A:B	ER	1XQS_A:C	OX
3HI6_XY:B	AA	4IZ7_A:B	EI	2CFH_A:C	OX
3L5W_LH:I	AA	4LW4_AB:C	ES	2H7V_A:C	OG
3V6Z_AB:F	AA	1B6C_A:B	OX	2HRK_A:B	OX
1CGI_E:I	EI	1GP2_A:BG	OG	20ZA_B:A	OX
1IJK_A:BC	ER	1GRN_A:B *	OG	3AAA_AB:C	OX
1JIW_P:I	EI	1HE8_B:A	OG	3AAD_A:D	OX
1KKL_ABC:H	ES	1I2M_A:B	OG	3BX7_A:C	OX
1M10_A:B	ER	1IB1_AB:E	OX	3CPH_G:A	OG
1NW9_B:A	ER	1K5D_AB:C	OG	3DAW_A:B	OX
1R6Q_A:C	ER	1LFD_B:A	OG	3R9A_AC:B	OR
1ZM4_A:B	ES	1MQ8_A:B	OX	3S9D_B:A	OR
2NZ8_A:B	ER	1SYX_A:B	OX	3SZK_DE:F	OX
				4JCV_ADBC:E	OX

Table S7Protein complexes used for the ZDOCK Set-I data set and GRAMM-X data sets.

Note: The category of protein complexes in Table S6 and Table S7 are labeled as below.

Complex category labels:

EI = Enzyme-Inhibitor ES = Enzyme-Substrate ER = Enzyme complex with a regulatory or accessory chain AA = Antibody-Antigen AS = Antigen – Single domain Antibody OG = Others, G-protein containing OR = Others, Receptor containing OX = Others, miscellaneous

Complex	Category ^a	Complex	Category ^a	Complex	Category ^a
1JTD	_	3AAA	_	3MXW	AA
1RKE		3AAD		3RVW	AA
2A1A		3BX7		4DN4	AA
2GAF		3DAW		4FZA	
2GTP		3F1P		4G6J	AA
2VXT	AA	3FN1		4G6M	AA
2W9E	AA	3G6D	AA	4H03	
2YVJ		3H11		4IZ7	
				4M76	

Table S8Protein complexes used for the HADDOCK data set. The data set and decoys aredownloaded from the following website: https://data.sbgrid.org/dataset/131/

Note: The category of protein complexes in Table S8 labeled as below.

Complex category labels:

AA = Antibody-Antigen

Others are non-antibody antigen

Figure S1 Pearson Coefficients calculated on some Rosetta decoy data sets using Nepre scoring function with Angular grid (left panel) and Fibonacci grid (right panel).

Figure S2 Pearson Coefficients calculated on TOP 10 decoys of some of ZDOCK Set-I decoys' data set using Nepre (left side panel) and iNepre (right side panel) scoring functions by applying Fibonacci grid.

Figure S3 The comparison of neighborhood preferences (Nepre) derived from single chain protein structures and that from protein complex interfaces. Each row summaries the neighborhoods centered at a particular amino acid type; and each entry in a row corresponds to a neighboring amino acid distributed around the centered amino acid. The columns for alanine, cysteine, glycine and valine reveal large differences in the neighborhood preferences; the divergences are small in other cases, indicating similar preferences.

Figure S4 The comparison of neighborhood preferences (iNepre) derived from 2-4 chain protein structures interface residues and that from protein complex interfaces. Each row summaries the neighborhoods centered at a particular amino acid type; and each entry in a row corresponds to a neighboring amino acid distributed around the centered amino acid. The columns for leucine, methionine, threonine, and tyrosine reveal large differences in the neighborhood preferences; the divergences are small in other cases, indicating similar preferences.

Figure S5 50 % of amino acid – amino acid pair interfacial residues data used in the comparison of neighborhood preferences (iNepre) derived from 2-4 chain protein structures interface residues and that from protein complex interfaces. Each row summaries the neighborhoods centered at a particular amino acid type; and each entry in a row corresponds to a neighboring amino acid distributed around the centered amino acid. The columns for leucine, methionine, threonine, and tyrosine reveal large differences in the neighborhood preferences; the divergences are small in other cases, indicating similar preferences.

Figure S6 75 % of amino acid – amino acid pair interfacial residues data used in the comparison of neighborhood preferences (iNepre) derived from 2-4 chain protein structures interface residues and that from protein complex interfaces. Each row summaries the neighborhoods centered at a particular amino acid type; and each entry in a row corresponds to a neighboring amino acid distributed around the centered amino acid. The columns for leucine, methionine, threonine, and tyrosine reveal large differences in the neighborhood preferences; the divergences are small in other cases, indicating similar preferences.

Figure S7 RMSD of CAPRI acceptable models (T29, T30, T32, T37, T39, T40, T41, T46, T47, T50, T53, T54) with respect to their corresponding native structures, divided into two groups according to acceptable number of models for better visualization.