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1. Implementation

In principle, the implementation of the Romanov model in the MembraneDyn software

follows the theory outlined above. However, a number of changes have been made to

complement and extend its functions. The most important of these, is the introduction

of a time-dependence for the displacement amplitude correlation. This follows the form

of the mean positional deviation of a damped harmonic oscillator from its original

position, x0, after time t (Uhlenbeck & Ornstein, 1930):
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Where β is the damping coefficient and ω1 the undamped angular frequency of the

oscillator. The coefficients, β and ω are:
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where λ(l) is the eigenvalue for the mode l, determined by solving the linear homoge-

neous equations discussed in the previous section. The inclusion of the time-dependence

therefore requires the correlation functions to be calculated separately for each mode.

The other important changes relate to the calculation of the scattering function and

can be summarised as follows:

1. The SLD contrast term is omitted.

2. In its place, an evanescent decay term has been included, which reflects the

experimental conditions in GISANS and GINSES experiments.

3. A Gaussian cut-off term has been added to the layer displacement correlation

function Gnm.

The contrast term, shown in Eq. 8a in the main text, is not included in the Mem-

braneDyn program as it does not affect the normalised intermediate scattering func-

tion (S(Q, τ)/S(Q, 0)). The omission of this term therefore increases the computation

speed. The evanescent (i.e. exponential) decay term is required for comparison with

experimental data. In a GINSES experiment, the neutron beam undergoes total inter-

nal reflection at the interface between the silicon block and the sample, and the sample

is only probed by the evanescent neutron field. In practice, the (neutron) refractive

indices of the sample and the support differ only by a fraction of a percent and the

penetration depth is fairly large (on the order of 100 nm). Nevertheless, the fact that

the layers closer to the interface contribute more to the measured dynamics than those

further away, must still be accounted for. This is done via the following evanescent

term:

fev(n,m) = exp

(
−
(N − n) · dlayer
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where dev is the penetration depth. The effect of the evanescent term for m = 0 is

shown in Figure S1. Note that whilst the displacement correlations for layers far away

from the interface do not explicitly contribute to the scattering functions, the mere

presence of layers above those probed, does affect the scattering implicitly by altering

the dynamics of the system as a whole.

Fig. S1. Relative strengths of the contributions arising from the correlation functions
unm, as dictated by the evanescent term in Eq. S4. (a) Shows the relative contri-
butions from un1 for different numbers of total layers, with the normalised total
contribution for each system of N layers equal to unity. (b) Shows the relative con-
tributions for a system with 20 layers normalised to the contribution from u11. In
both cases dev = 50 nm.

Finally, the ‘cut-off’ term is required, as the scattering function is evaluated over a

finite summation range, here Λ in Eq. 9 in the main text. Neglecting this term leads

to artefacts such as spurious oscillations and negative scattering intensities and it is

therefore necessary for comparison with experimental data. In this case, a Gaussian

cut-off is used:

fcut(r) = exp

[
−
(

r

wcutrmax

)2
]

(S5)

where wcut is the normalised standard deviation of the Gaussian distribution (i.e. a

value between zero and one). Other cut-off functions were also examined, such as the

autocorrelation of a disc function:

fcut(r) = 1− 2r
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However, this was also found to yield some off-specular artefacts. The cut-off func-

tions and their effects on the scattering intensity can be seen in Figure S2.

Fig. S2. (a) Possible cut-off functions for the numerical integration in real-space. (b)
Shows the normalised scattering intensity at τ = 0 with the Gaussian cut-off term
applied. (c) Shows the normalised scattering intensity at τ = 0 with no cut-off term
applied. The white areas represent negative scattering intensity.

The calculation of the scattering function (Eq. 8 in the main text) is performed in

three parts. As can be seen from Eqs. 7 and 9 in the main text, the function includes

a multiple integral of the form:

∫ rmax

rmin

dr⊥f(r⊥) exp

(∫ qmax

qmin

dq⊥g(q⊥, r⊥)

)
(S7)

This can be solved numerically in two steps by first defining all integration points

in q⊥ and r⊥ (note: both scalar values). The value of the inner integral is then cal-

culated using the trapezoidal rule in a nested loop for each value of m, n, r⊥ and t

and stored in an array. The outer integral, over r⊥, is solved in the second step, again

using the trapezoidal rule, using the stored values from the previous step. Finally

the summation steps are performed over n and m. The advantage of performing the

multiple integral over two steps, is that the calculations do not require repeated func-

tion calls to external integration routines. As a result, the individual calculations can

be performed relatively efficiently. The slight downside to this approach, is that the

integration points must be defined in advance which precludes the use adaptive inte-

gration routines. As the functions become highly oscillatory at large q⊥ and r⊥ values,
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extreme care must be taken when defining the limits and number of integration points

(see Supporting Information for more details).

The equations above were first implemented as a stand-alone executable written in

FORTRAN. A python extension module was then constructed using the FORTRAN

source code in conjunction with the f2py command line tool. This module was then

employed to perform the fits and simulations shown in the following section. Aside

from the physical parameters of the model, which have been introduced above and

are explored in more detail in below, the program also contains the option to modify

a number of parameters governing the internal computation. The parameters rmax

and Nr control the limits and number of points in the numerical integration over r⊥,

similarly, the parameters qmax and Nq govern the limits and number of points in the

numerical integration over q⊥. Finally, the parameter wcut can be modified to adjust

the width of the Gaussian used for the cut-off term (see Eq. S5).

With the exception of the cut-off term, all of the control parameters represent trade-

offs between the accuracy of the simulation and the computation time. The integration

interval must be wide enough and the integration points close enough together to

capture all of the relevant behaviour. The integration parameters are examined in

further detail below.

2. Additional Results

2.1. Layer Spacing: dlayer

Finally, Figure S3 demonstrates the effects of an evolving interlayer spacing. By

comparison with Figure 3 in the main text, it can be seen that the changes in the

observed dynamics are not directly linked to the interlaying spacing itself, but rather

by the relationship between d and Qz. When the system is no longer being probed

on the shoulder of a correlation peak, the ISF decays much faster and the oscillations
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associated with the collective motion become much weaker. Although these results

are therefore a logical consequence of the results in section 3.1 of the main text, they

are included to highlight the sensitivity of the system to very small changes in sample

thickness (as can be seen in Figure S3b). This effect is thought to be a consequence of

the fact that the layers are infinitely thin. In practice, this is obviously not the case

and the dynamics are not expected to be this sensitive to the interlayer distance in

real samples. It does demonstrate, however, that experimental sample should be well

characterised and Qz carefully chosen before any GINSES measurements.

Fig. S3. (a) The evolution of the intermediate scattering functions with changing layer
spacing and (b) examples demonstrating the sensitivity of the ISF to dlayer. The
standard parameter values used can be found in Table 1 in the main text.

3. Integration Parameters

As noted in the main article, in order to obtain accurate results it is critical to select

a suitable set of integration parameters. The two integration steps (over q and r

respectively) take the form:

G =

∫ rmax

0
dr⊥ f(r⊥) exp

(∫ qmax

0
dq⊥ g(r⊥, q⊥)

)
(S8)

To perform this calculation numerically, it is necessary to perform an integration

over q for each integration point on r. In order to optimise the performance, the
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integration over q is first carried out for all values of r and stored in an array. The

subsequent integration over r then uses the stored values to calculate G. Whilst this

approach reduces the number of function calls and allows the numerical integration

steps to be performed quickly, it also requires that the integration points be determined

in advance and therefore does not allow for the use of adaptive integration routines.

This is significant, as the integrands can, in both cases, be highly oscillatory. In order to

optimise the performance whilst maintaining accuracy, we have therefore investigated

and characterised the response of both integrands with respect to the upper bounds

and the number of integration points necessary to accurately capture the behaviour

of the system. The data in the following plots were generated using the Mathematica

software package.

3.1. Integration over q

At time t = 0, the q-integrand in Eq. S8 is given by:

g(r⊥, q⊥)nm = q⊥J0(q⊥r⊥)(M̂
−1)nm(q⊥) (S9)

where M̂ is a matrix defined by u,v,x,y and z (as defined in the main text). Although

the program calculates the above expression slightly differently (via summation of the

individual modes) due to the time-dependence, the behaviour of the function with

respect to r⊥ and q⊥, as shown in Figure S4, is identical. For small values of r⊥ below

r⊥ ∼ 10 Å, the Bessel-term is approximately equal to 1 and Eq. S9 takes the form of

a single, broad peak. As r⊥ increases beyond ∼ 10 Å, the integrand begins to oscillate

with increasing frequency. For all combinations of n and m and all physically relevant

parameter values (i.e. all of those investigated in the main article) the value of the

integrand converges to zero at high q⊥ (i.e. qmax < 0.2 Å−1). Finally, in Figure SS4c,

it can be seen that the number of q-integration points is highly dependent on rmax.

For large values of rmax, at least 1000 points are required otherwise the calculated
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scattering functions may be incorrect. For the calculated data shown in the main text,

2000 q-integration points were used with qmax = 0.2 Å−1.

Fig. S4. (a) Calculation of the integrand of the inner integral in Eq. S8, corresponding
to the RHS of Eq. S9 with qmax = 1 Å−1. (b) RHS of Eq. S9 with qmax = 0.2 Å−1.
(c) RHS of Eq. S9 for r = 2000 Å with qmax = 0.2 Å−1, highlighting the importance
of including sufficient integration points.

3.2. Integration over r

Figure S5a shows the behaviour of the outer integral (r⊥) in Eq. S8. The integral is

clearly divergent (which causes the negative scattering intensities seen in Figure 3 in

the main text) and this highlights need for a gradual ‘cut-off’ function. In this case,

a Gaussian cut-off function is used (discussed in more detail in the main text) which

adds a further parameter, rcut, defining the strength or abruptness of the cut-off.

When rcut is large (∼ 1), the integrand remains divergent, when rcut is small (∼ 0.1)

the oscillatory nature of the function is lost. In the main text and in the following

plots, a value of rcut = 0.3 has been selected as this represents the largest possible

value of rcut that still exhibits convergent behaviour in the scattering function. As

alluded to in the previous section, the value of rmax also has a significant influence on

the behaviour of the integrand. Experimentally, rmax corresponds to the radius of the

membrane patch being observed and consequently represents a maximum observable

feature size. In the GINSES experiments performed to date, this size is approximately

100 nm, however, to account for the cut-off function, in this work we have opted to

work with a value of rmax = 2000 Å. In contrast to the q⊥ integrand, the frequency of
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the r⊥ integrand is constant and depends only on Q⊥ (as can be seen in Figure S5b).

As this value is small (∼ 0.0075 Å−1), the number of integration points does not need

to be as high as for the q⊥ integral. For the calculated data shown in the main text,

200 r-integration points were used.

Fig. S5. (a) Calculation of the integrand of the outer integral in Eq. S8 for qmax = 0.2
and Q⊥ = 0.0075 showing the effect of the rcut parameter. (b) Calculation of the
integrand of the outer integral in Eq. S8, showing the effect of the Q⊥ parameter
on the oscillation frequency.
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