

Volume 78 (2022)

Supporting information for article:

Crystallographic and X-ray scattering study of RdfS, a recombination directionality factor from an integrative and conjugative element

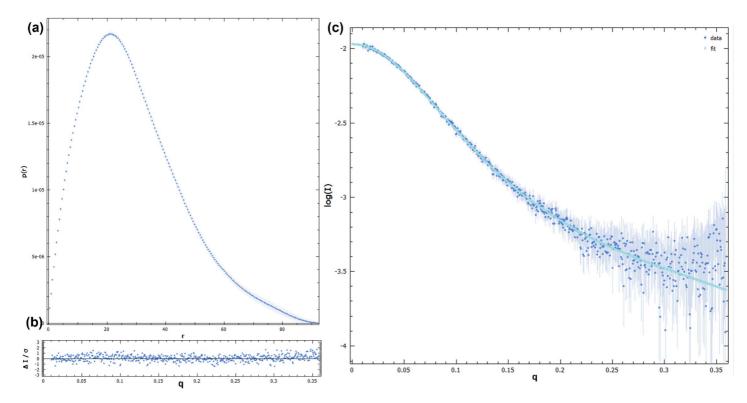

Callum J. Verdonk, Andrew C. Marshall, Joshua P. Ramsay and Charles S. Bond

Table S1 The root-mean-square deviation (RMSD) of atomic positions between AlphaFoldgenerated models used as queries in Molecular Replacement described in section 3.3. Number of atoms shown in brackets. RMSD between alpha-carbons ($C\alpha$), and outliers-removed also shown. All values as calculated by Pymol *align* function.

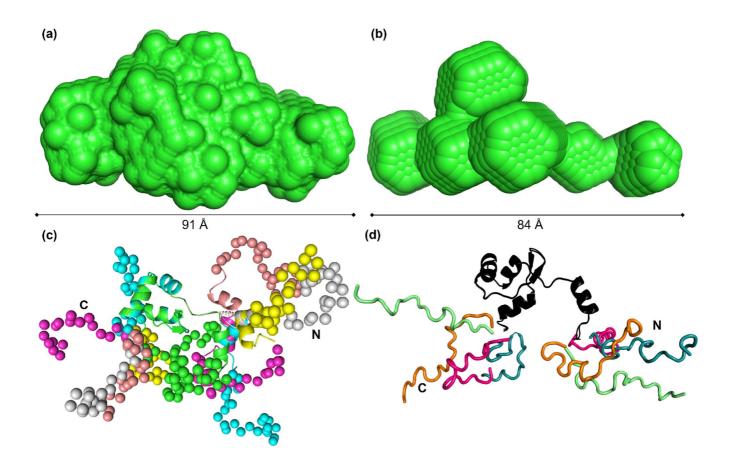

Models compared	RMSD (Å)	RMSD (all atoms)	RMSD Ca/Ca no outliers (Å)
		(Å)	
Model 1:Model 2	0.974 (523)	4.773 (690)	0.871 (68)/4.397 (89)
Model 1:Model 3	1.055 (475)	6.059 (690)	0.938 (60)/5.510 (89)
Model 1:Model 4	0.746 (499)	3.648 (690)	0.600 (62)/3.023 (89)
Model 1:Model 5	1.207 (513)	5.324 (690)	1.203 (67)/4.797 (89)
Model 2:Model 3	0.737 (481)	7.167 (690)	0.701 (61)/6.705 (89)
Model 2:Model 4	0.940 (508)	5.827 (690)	0.892 (67)/5.313 (89)
Model 2:Model 5	1.003 (494)	4.227 (690)	0.820 (64)/3.636 (89)
Model 3:Model 4	1.261 (516)	3.665 (690)	1.284 (71)/3.255 (89)
Model 3:Model 5	1.229 (469)	6.509 (690)	1.598 (66)/5.852 (89)
Model 4:Model 5	0.913 (484)	4.741 (690)	1.010 (64)/4.449 (89)
Average	1.007	5.194	0.992/4.694

Table S2RMSD for each individual chain (monomer) of RdfS in the asymmetric unit. Number ofatoms compared in brackets. All values as calculated by Pymol *align* function.

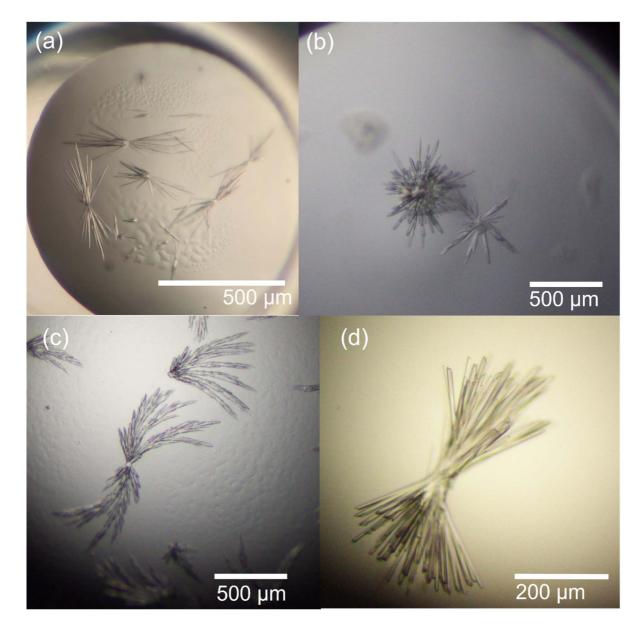

Chains compared	RMSD (Å)	RMSD (all atoms) (Å)	RMSD Ca/Ca no outliers (Å)
A:B	0.236 (421)	0.993 (536)	0.118 (54)/0.601 (67)
A:C	0.388 (434)	1.020 (535)	0.356 (58)/0.602 (67)
A:D	0.234 (424)	1.027 (535)	0.205 (59)/0.579 (67)
B:C	0.311 (426)	1.044 (535)	0.248 (56)/0.404 (67)
B:D	0.300 (418)	1.098 (535)	0.241 (56)/0.457 (67)
C:D	0.441 (441)	0.927 (535)	0.388 (58)/0.537 (67)
Average	0.318	1.02	0.260/0.530

Figure S1 Scattering plot and model fit for pair-distribution P(r) function (inverse Fourier transform of I(q)) using GNOM. (a) D_{max} plot suggesting 6H-RdfS has a rather elongated shape of approx. 92 Å. Note the smooth approach to 0 for r. (b) accompanying normalised residual fit for P(r). (c) Graphical representation of P(r) fit (light blue line) into logarithmic scattering data (dark blue points).

Figure S2 Various models of 6H-RdfS based on SAXS scattering data. (a) *Ab initio* DAMAVERrefined global bead model showing the scattering envelope of 6H-RdfS. The distance estimate of 91 Å aligns closely with the D_{max} calculated in Sup Fig 2. All 11 DAMMIN-generate models were include in DAMAVER calculations, suggesting each model converged toward a similar shape. (b) DAMMIFgenerated *ab initio* bead model showing 6H-RdfS scattering envelop. Note the similarities to (a) and Fig 1e. (c) Six EOM-generated model of 6H-RdfS using the X-ray structure of RdfS: with the wHTH domain fixed and N-terminal helix allocated as flexible. This model is the same as Fig 1f, with the addition of the dummy residues allocated to the N-terminal (25 residues total: 6H tag, flexible linker, TEV-site) and undetermined 21-residues from the X-ray structure. (d) Four CRYSOL-generated models of 6H-RdfS utilising the entire X-ray structure of RdfS as a template model defined as rigid. Note the flexibility of the N- and C- termini in both (c) and (d) models.

Figure S3 Additional representative crystals of RdfS. (a) Index-screen condition showing typical RdfS needle-like crystals (Index screen condition G6). (b) ProPlex screen condition showing large needle star-like multinuclear RdfS crystals (ProPlex condition 38). (c) Condition chosen for additive screen optimisation, a variant of condition 38 in ProPlex screen (drop condition: 0.1 M MES pH 6.5, 8% w/v PEG 5000 MME, 10% v/v 1-propanol). (d) Variant of final condition (drop condition: 4 µL condition from (c) + 1 µL 0.05 M MES pH 6.5, 4% w/v PEG 5000 MME, 5% v/v 1-propanol, 0.1 M sodium citrate tribasic dehydrate. Buffer reservoir was 100 µL 0.05 M MES pH 6.5, 4% w/v PEG 5000 MME, 5% v/v 1-propanol, 0.1 M sodium citrate tribasic dehydrate). No significant diffraction was seen for any of these crystals (none better than 10 Å).