

Volume 78 (2022)
Supporting information for article:

Atomic resolution studies of S1 nuclease complexes reveal details of RNA interaction with the enzyme despite multiple latticetranslocation defects

Kristýna Adámková, Tomáš Koval', Lars H. Østergaard, Jarmila Dušková, Martin Malý, Leona Švecová, Tereza Skálová, Petr Kolenko and Jan Dohnálek

Figure S1 The ligand binding in the active site of S1-URI and S1-CMP with $2 \mathrm{~m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ (blue mesh) composite omit map around ligands at 1σ level. (a) The active site of the S1-URI complex with bound phosphate ion (Pi, phosphorus in orange) and uridine (URI, carbon in cyan) and (b) the active site of S1-CMP with bound phosphate ion (Pi, phosphorus in orange) and cytidine-5'-monophosphate (CMP, carbon in cyan). Active site is composed of zinc ions (grey spheres) coordinated by nine amino acids (carbon in green), NBS1 site (carbon in light blue), and one positive residue Lys68 (carbon in blue). The molecular graphics was created using PyMOL (Schrödinger) and the composite omit maps were generated in Phenix (Adams et al., 2010) using the refinement option and the final corrected data.

Figure S2 The highest positive residual difference density maxima of the S1-URI and S1-CMP structures. (a) The highest $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ peak of S1-URI structure at 6.8σ level indicating uninterpretable C-terminus of the protein chain and (b) the highest $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ peak of the S1-CMP structure at 8.0σ level - most likely a mixture of alternative conformations of a Bis-Tris molecule. $2 \mathrm{~m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ electron density (blue mesh) is contoured at 1σ level and $\mathrm{m} F_{o}-\mathrm{D} F_{\mathrm{c}}$ difference electron density (green and red mesh) is contoured at 3σ level (protein in sticks with carbon in yellow, water molecules as red spheres). The molecular graphics was created using PyMOL (Schrödinger).

Figure S3 Two-vector correction of multiple lattice-translocation defect, which leads to insufficient LTD correction of S1-URI data. (a) Unit cell of crystal structure S1-URI with enzyme molecules (grey cartoon) and zinc ions (grey spheres, grey rectangles) in original positions (\mathbf{t}_{0}) and in the two translated positions using translation vectors $\mathbf{t}_{1}=(0,0,0.4380)$ (orange rectangles) and $\mathbf{t}_{2}=(0,0,0.5620)$ (red rectangles). (b-e) Detailed view with $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ difference density contoured at 3σ level around the zinc ions (red and green mesh) (b) after refinement against corrected data with $k_{1}=0.04$ and $k_{2}=0.05$, (c) after refinement against corrected data with $k_{1}=0.05$ and $k_{2}=0.06$, (d) after refinement against corrected data with $k_{1}=0.06$ and $k_{2}=0.07$, and (e) after refinement against corrected data with $k_{1}=0.07$ and $k_{2}=0.08$. The molecular graphics was created using PyMOL (Schrödinger).

Table S1 S1-URI data two-vector correction parameters and comparison of refinement statistics provided by Refmac5 (Murshudov et al., 2011) after data correction with only two translation vectors $\mathbf{t}_{1}=(0,0,0.438)$ and $\mathbf{t}_{2}=(0,0,0.562)$.

Parameters k_{1} and k_{2} correspond to translation vectors \mathbf{t}_{1} and \mathbf{t}_{2}. Translation vectors are in fractional coordinates.

S1-URI		Data correction			
	uncorrected	Correction 1 (Fig. S3b)	Correction 2 (Fig. S3c)	Correction 3 (Fig. S3d)	Correction 4 (Fig. S3e)
k	-	$k_{1}=0.04$ $k_{2}=0.05$	$k_{1}=0.05$ $k_{2}=0.06$	$k_{1}=0.06$ $k_{2}=0.07$	$k_{1}=0.07$ $k_{2}=0.08$
Total fraction of corrected intensity	0%	9%	11%	13%	15%
$R_{\text {all }}$	0.1422	0.1237	0.1226	0.1259	0.1274
The strongest $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ peak on \mathbf{t}_{0} catalytic $\mathrm{Zn} \mathrm{n}^{2+}$ ions (σ)	-11.3	-11.3	-12.0	-11.3	-12.0
Overall FOM	0.857	0.907	0.907	0.904	0.902
Average correlation coefficient $\left(F_{\mathrm{o}}, F_{\mathrm{c}}\right)$	0.9209	0.9311	0.9311	0.9280	0.9262

Figure S4 Two positions of phosphate in the active site of the S1-URI complex (alternative interpretations with occupancies 20% and 30%. The naming of the phosphate atoms corresponds to the naming in nucleotides. (a) Phosphate ion in the "leaving" position, which is probably also very similar to the pre-cleavage state (before inversion) with the nucleophile W 1 centred between Zn 1 and Zn 2 , oxygen O_{R} of phosphate coordinated between Zn 1 and Zn 3 , oxygen O_{s} in contact with Zn 2 , oxygen $\mathrm{O}^{3^{\prime}}$ in contact with Zn 3 and near the position of nucleoside uridine, and oxygen $\mathrm{O}^{5^{\prime}}$ in contact with Asp65 ($2.5 \AA$ to $\mathrm{O}^{\delta 1}$). (b) Position of phosphate in the post-cleavage state (after inversion), with oxygen O_{N} centred between Zn 1 and Zn 2 , oxygen O_{R} in contact with Zn 3 , oxygen $\mathrm{O}_{5^{\prime}}$ in contact with Asp65 ($2.7 \AA$ to O^{81}), and oxygen O_{S} in contact with Zn 2 and stabilized by Lys68 and oxygen O^{\prime} of the ribose moiety of URI. Phosphate contacts with neighbouring atoms are shown by red dashed lines and all interatomic distances are in \AA. The molecular graphics was created using PyMOL (Schrödinger).

(a)

(c)

(d)

Figure S5 Conformation of the ribose moiety of ligands in the active site of S1 nuclease observed in the reported structures. (a) The C4'-exo conformation of ribose of URI, where the position of atom C4' is out of the $\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{O} 4^{\prime}$ plane. The pseudorotational phase angle (Li and Szostak, 2014) is 57.34° as calculated using PROSIT (https://cactus.nci.nih.gov/prosit/) (b) The C2'-endo conformation of ribose of CMP, where the position of atom $\mathrm{C} 2^{\prime}$ is on the same side with respect to the $\mathrm{C1}^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}$ plane as the nucleobase and the 5^{\prime} end of nucleotide, while atom $\mathrm{C} 3^{\prime}$ is on the other side. The pseudorotational phase angle (Li and Szostak, 2014) is 166.49° as calculated using PROSIT. (c) Valence angles of the ribose moiety of URI and (d) of CMP. The molecular graphics was created using PyMOL (Schrödinger).

References

Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. \& Zwart, P. H. (2010). Acta Crystallographica Section D 66, 213-221.

Li, L. \& Szostak, J. W. (2014). J Am Chem Soc 136, 2858-2865.
Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. \& Vagin, A. A. (2011). Acta Crystallogr D Biol Crystallogr 67, 355-367.

