

STRUCTURAL BIOLOGY

Volume 78 (2022)
Supporting information for article:

Time-resolved serial femtosecond crystallography on fatty-acid photodecarboxylase: lessons learned

Kyprianos Hadjidemetriou, Nicolas Coquelle, Thomas R. M. Barends, Elke De Zitter, Ilme Schlichting, Jacques-Philippe Colletier and Martin Weik

Supporting information

Supplementary Table S1: Statistics of data processing and of refinement against observed structure factors at $20 \mathrm{ps}, 900 \mathrm{ps}, 300 \mathrm{~ns}, 2 \mu \mathrm{~s}$ as reported in Sorigué et al ((Sorigue et al., 2021))

Dataset	dark	light_20ps	light_900ps	light_300ns	light_2 ${ }^{\text {s }}$
PDB ID code	6ZH7				
Pump-laser excitation (400 nm)	no	yes	yes	yes	yes
Pump energy ($\mu \mathrm{J}$)	n/a	11	11	11	11
Nominal pump-probe delay	n/a	20 ps	900 ps	300 ns	$2 \mu \mathrm{~s}$
Space group	$P 2_{1}$				
Unit cell parameters a (\AA) b (\AA) c (\AA) $\beta\left({ }^{\circ}\right)$	$\begin{aligned} & 61.4 \pm 0.1 \\ & 60.0 \pm 0.1 \\ & 182.9 \pm 0.3 \\ & 90.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 61.4 \pm 0.1 \\ & 60.0 \pm 0.1 \\ & 182.9 \pm 0.3 \\ & 90.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 61.4 \pm 0.1 \\ & 60.0 \pm 0.1 \\ & 182.9 \pm 0.3 \\ & 90.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 61.4 \pm 0.1 \\ & 60.0 \pm 0.1 \\ & 182.9 \pm 0.3 \\ & 90.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 61.4 \pm 0.1 \\ & 60.0 \pm 0.1 \\ & 182.9 \pm 0.3 \\ & 90.6 \\ & \hline \end{aligned}$
Collected frames	2,579,455	1,625,450	1,728,093	1,298,912	909,645
Hits	264,812	290,962	227,517	151,599	66,358
Indexed images	68,421	88,919	50,214	44,868	18,600
Resolution (Å)	$\begin{aligned} & 25-2.00 \\ & (2.05-2.00) \end{aligned}$	$\begin{aligned} & 25-2.20 \\ & (2.25-2.20) \end{aligned}$			
Observations	$\begin{aligned} & 33,069,955 \\ & (1,438,474) \end{aligned}$	$\begin{aligned} & \hline 42,928,992 \\ & (1,869,092) \\ & \hline \end{aligned}$	$\begin{array}{r} 25,083,092 \\ (1,091,803) \\ \hline \end{array}$	$\begin{aligned} & 20,934,706 \\ & (907,081) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,076,033 \\ & (383,644) \\ & \hline \end{aligned}$
Unique reflections	$\begin{aligned} & 93,061 \\ & (6,086) \\ & \hline \end{aligned}$	$\begin{aligned} & 93,060 \\ & (6,086) \\ & \hline \end{aligned}$	$\begin{aligned} & 93,064 \\ & (6,086) \\ & \hline \end{aligned}$	$\begin{aligned} & 93,055 \\ & (6,086) \\ & \hline \end{aligned}$	$\begin{aligned} & 70,385 \\ & (4,671) \\ & \hline \end{aligned}$
$\mathrm{R}_{\text {split }}{ }^{\text {(\%) }}$	15.1 (68.5)	13.4 (61.3)	18.0 (80.0)	19.4 (84.5)	24.9 (67.8)
CC*	0.996 (0.841)	0.996 (0.869)	0.994 (0.797)	0.992 (0.790)	0.983 (0.816)
I/ σ (I)	5.6 (1.7)	6.40 (1.9)	4.8 (1.4)	4.4 (1.3)	3.7 (1.6)
Completenes s (\%)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)
Multiplicity	355 (236)	461 (307)	270 (179)	225 (149)	115 (82)
	n.a	0.157	0.171	0.174	0.202
Refinement statistics					
Refinement strategy	Classical refinement	n.a	n.a	n.a	n.a
Resolution (\AA)	$\begin{aligned} & 25-2.00 \\ & (2.05-2.00) \\ & \hline \end{aligned}$				
$\mathrm{R}_{\text {free }}$	0.235				
$\mathrm{R}_{\text {work }}$	0.196				
Number of protein atoms	8417				
Number of ligand atoms	166				
Number of water atoms	394				

B-factor protein $\left(\AA^{2}\right)$	31				
r.m.s.d. bond lengths (\AA)	0.01				
r.m.s.d. angles $\left({ }^{\circ}\right)$	1.8				
Ramachandra n favored	95.8%				
Ramachandra n allowed	3.7%				
Ramachadran outliers	0.2%				
Rotamer outliers	1.6%				
C-beta outliers	0				
Clashscore	5				

Values in brackets are for the highest resolution shell

Supplementary Table S2: Statistics of pump-power titration SFX data processed in space group $P 2_{1}$

Dataset	$\Delta \mathrm{t}$ _900 ps	$\Delta \mathrm{t} 900 \mathrm{ps}$	$\Delta \mathrm{t} 900 \mathrm{ps}$
Energy ($\mu \mathrm{J}$)	3.7	7.5	11
Data collection and processing			
Space group	$P 2_{1}$	$P 2_{1}$	$P 2_{1}$
${ }^{\text {S }}$ Unit cell parameters a (\AA) b (\AA) c (\AA) $\beta\left({ }^{\circ}\right)$	$\begin{gathered} 61.4 \pm 0.1 \\ 60.0 \pm 0.1 \\ 182.9 \pm 0.3 \\ 90.6 \end{gathered}$	$\begin{gathered} 61.4 \pm 0.1 \\ 60.0 \pm 0.1 \\ 182.9 \pm 0.3 \\ 90.6 \end{gathered}$	$\begin{gathered} 61.4 \pm 0.1 \\ 60.0 \pm 0.1 \\ 182.9 \pm 0.3 \\ 90.6 \end{gathered}$
Hits	85,757	141,349	188,288
Indexed image, total	18,704	34,264	50,214
Indexing rate (\%)	21.81	24.24	26.67
Indexed images, subset	18,704	18,704	18,704 (*)
Resolution (\AA)	$\begin{gathered} 25-2.20 \\ (2.25-2.20) \\ \hline \end{gathered}$	$\begin{gathered} 25-2.20 \\ (2.25-2.20) \\ \hline \end{gathered}$	$\begin{gathered} 25-2.20 \\ (2.25-2.20) \\ \hline \end{gathered}$
Observations	$\begin{aligned} & 7,724,496 \\ & (365,950) \\ & \hline \end{aligned}$	$\begin{gathered} 10,189,805 \\ (490,193) \\ \hline \end{gathered}$	$\begin{gathered} 10,751,282 \\ (515,733) \\ \hline \end{gathered}$
Unique reflections	70,419 (4,672)	70,420 (4,672)	70,426 (4,672)
${ }^{\text {\# }} \mathrm{R}_{\text {split }}$ (\%)	25.7 (73.0)	18.8 (54.5)	18.4 (52.1)
\#CC*	0.983 (0.800)	0.991 (0.896)	0.991 (0.897)
${ }^{\text {I }}$ / σ (I)	3.6 (1.5)	3.9 (1.7)	3.9 (1.8)
"Completeness (\%)	100 (100)	100 (100)	100 (100)
\#Multiplicity	109 (78)	145 (105)	153 (110)

${ }^{(\#)}$) statistics refer to the subset of indexed images
${ }^{\$}$) all data sets were processed using the same unit cell.

Supplementary Table S3: Statistics of pump-power titration SFX data processed during the LT59 beamtime in the assumed space group $P 2_{1} 2_{1} 2_{1}$

Dataset	Dark	$\Delta \mathrm{t}$ _900 ps	$\Delta \mathrm{t}$ _900 ps	$\Delta \mathrm{t}$-900 ps
Energy ($\mu \mathrm{J}$)	-	3.7	7.5	11
Data collection and processing				
Space group	$P 2{ }_{12} 2_{1}$	$P 2{ }_{2}{ }_{1}{ }_{1}$	$P 2{ }_{1} 1_{1}{ }_{1}$	$P 2{ }_{1} 2_{1}{ }_{1}$
${ }^{\text {S }}$ Unit cell parameters a (\AA) b (\AA) c (\AA) $\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 60.2 \pm 0.1 \\ & 61.6 \pm 0.2 \\ & 183.6 \pm 0.5 \\ & 90.0 \end{aligned}$	$\begin{aligned} & 60.2 \pm 0.1 \\ & 61.6 \pm 0.2 \\ & 183.6 \pm 0.5 \\ & 90.0 \end{aligned}$	$\begin{aligned} & 60.2 \pm 0.1 \\ & 61.6 \pm 0.2 \\ & 183.6 \pm 0.5 \\ & 90.0 \end{aligned}$	$\begin{aligned} & 60.2 \pm 0.1 \\ & 61.6 \pm 0.2 \\ & 183.6 \pm 0.5 \\ & 90.0 \end{aligned}$
Hits	172,376	135,930	142,757	226,977
Indexed images	18,430	15,574	12,796	19,151
Indexing rate (\%)	10.69	11.46	8.96	8,44
Resolution (\AA)	$\begin{aligned} & 25-1.80 \\ & (1.84-1.80) \end{aligned}$	$\begin{aligned} & 25-1.90 \\ & (1.95-1.90) \end{aligned}$	$\begin{aligned} & 25-1.90 \\ & (1.95-1.90) \end{aligned}$	$\begin{aligned} & 25-1.90 \\ & (1.95-1.90) \end{aligned}$
Observations	$\begin{aligned} & 9,566,432 \\ & (417,017) \end{aligned}$	$\begin{aligned} & 6,954,961 \\ & (321,119) \end{aligned}$	$\begin{aligned} & \hline 6,818,329 \\ & (318,313) \end{aligned}$	$\begin{aligned} & 10,334,563 \\ & (483,927) \end{aligned}$
Unique reflections	$\begin{aligned} & \hline 66,176 \\ & (4,349) \end{aligned}$	$\begin{aligned} & \hline 56,302 \\ & (3,688) \end{aligned}$	$\begin{aligned} & 56,301 \\ & (3,688) \end{aligned}$	$\begin{array}{\|l\|} \hline 56,302 \\ (3,688) \end{array}$
Rsplit\# (\%)	23.6 (113.9)	23.6 (82.4)	27.9 (93.4)	22.4 (71.5)
CC*	0.986 (0.774)	0.984 (0.857)	0.975 (0.850)	0.983 (0.900)
$\mathrm{I} / \sigma(\mathrm{I})$	4.0 (1.0)	4.1 (1.4)	3.8 (1.2)	4.7 (1.5)
Completeness (\%)	100 (100)	100 (100)	100 (100)	100 (100)
Multiplicity	168 (96)	120 (87)	139 (86)	210 (131)
Refinement				
Resolution (\AA)	$\begin{aligned} & \hline 18-1.8 \\ & (1.83-1.80) \end{aligned}$			
Number of reflections	$\begin{aligned} & \hline 63,917 \\ & (2,642) \end{aligned}$			
$\mathrm{R}_{\text {free }}$	25.9 (33.0)			
$\mathrm{R}_{\text {work }}$	22.2 (31.1)			

Number of protein atoms	4,297			
Number of ligand atoms	80			
Number of water atoms	235			
B-factor protein $\left(\AA^{2}\right)$	21.96			
r.m.s.d. bond lengths ($\AA)$	0.006			
r.m.s.d. angles $\left({ }^{\circ}\right)$	0.813			
Ramachandran favored	96.23			
Ramachandran allowed	3.59			
Ramachandran outliers	0.18			
Rotamer outliers	2.24			
C-beta outliers	0			
Clashscore	2.87			

${ }^{\$}$) All data sets were processed using the same unit cell.

Supplementary Table S4: Statistics of refinement against extrapolated structure factors at 20 $\mathrm{ps}, 900 \mathrm{ps}, 300 \mathrm{~ns}, 2 \mu \mathrm{~s}$ including fatty acid (20 ps) and alkane ($900 \mathrm{ps}, 300 \mathrm{~ns}, 2 \mu \mathrm{~s}$) and a water molecule (at $20 \mathrm{ps}, 900 \mathrm{ps}, 300 \mathrm{~ns}, 2 \mu \mathrm{~s}$) in the active site.

Dataset	$\Delta \mathrm{t}$ _20ps_model_fatty_a cid	Δ t_900ps_model_alk ane	$\Delta \mathrm{t}$ _300ns_model_alk ane	$\Delta \mathrm{t} _2 \mu \mathrm{~s}$ _model_alk ane
$\begin{array}{\|lc\|} \hline \begin{array}{l} \text { PDB } \\ \text { entry } \end{array} & \text { ID } \\ \hline \end{array}$	7R33	7R34	7R35	7R36
Pump energy ($\mu \mathrm{J}$)	11	11	11	11
Refinement strategy	Difference refinement	Difference refinement	Difference refinement	Difference refinement
Resolution (A)	$\begin{array}{\|l\|} \hline 10-2.00 \\ (2.02-2.00) \end{array}$	$\begin{aligned} & \hline 10-2.00 \\ & (2.02-2.00) \end{aligned}$	$\begin{aligned} & \hline 10-2.00 \\ & (2.02-2.00) \end{aligned}$	$\begin{array}{\|l\|} \hline 10-2.20 \\ (2.23-2.20) \end{array}$
Number of reflections	89,568 (2,736)	89,564 (2,749)	89,565 (2,754)	67,248 (2,607)
$\mathrm{R}_{\text {free }}$	32.01 (44.91)	37.27 (49.62)	40.94 (48.25)	37.90 (48.63)
$\mathrm{R}_{\text {work }}$	26.46 (40.16)	30.63 (42.37)	35.19 (42.78)	29.72 (41.48)
Number of protein atoms	8,630	8,630	8,630	8,630
Number of ligand atoms	160	160	160	160
Number of water atoms	392	392	392	392
B-factor protein $\left(\AA^{2}\right)$	34.39	34.59	31.98	33.48
r.m.s.d. bond lengths (\AA)	0.008	0.008	0.002	0.009
$\begin{aligned} & \hline \text { r.m.s.d. } \\ & \text { angles }\left({ }^{\circ}\right) \end{aligned}$	1.025	1.026	0.451	1.070
Ramachandr an favored	94.70	93.18	94.08	92.91
Ramachandr an allowed	4.49	6.01	5.21	5.75
Ramachandr an outliers	0.81	0.81	0.72	1.35
Rotamer outliers	5.55	5.99	2.44	7.44
C-beta outliers	0	0	0	0
Clashscore	6.57	9.26	5.54	11.83

Supplementary Figure S1: Fourier difference maps at 900 ps at three different pumppulse energies using data processed in the $P 2_{1} 2_{1} 2_{1}$ space group
q-weighted Fourier difference electron density maps calculated between SFX light ($\Delta \mathrm{t}=900$ ps) data sets at different pump-laser energies and the dark data set ($F_{\text {obs }}{ }^{\text {light }} 900$ ps_E $-F_{\text {obs }}{ }^{\text {dark }}$); with $\mathrm{E}=3.7 \mu \mathrm{~J}(\mathrm{~A}), 7.5 \mu \mathrm{~J}(\mathrm{~B})$, and $11 \mu \mathrm{~J}(\mathrm{C})$ at $1.9 \AA$ resolution. Maps are contoured at +3.5 r.m.s.d. (green) and -3.5 r.m.s.d. (red). The cryo MX dark-state model (PDB entry code 6YRU) is overlaid in panels A-C with FAD in yellow, the fatty acid substrate (FA1) in green and the protein in light grey. The maps were calculated with 18430 dark images, and with 15 574, 12 796 and 19151 light images in panels A-C, respectively.

A

$\square . \square \square \square \quad \square .84 \square$
B

Supplementary Figure S2: Conformational differences between monomers A and B in the asymmetric unit
(A) Cartoon model of monomer A , colored according to the distance between equivalent $\mathrm{C} \alpha$ atoms in monomers A and $\mathrm{B}\left(\right.$ distance $\left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\right)$. The color code ranges from white (smaller distances) to red (larger distances; maximum is $0.84 \AA$) and reflects the distance between equivalent $C \alpha$ atoms in monomers A and B . Carbon atoms of the fatty acid and the FAD of monomer A are shown as green and yellow sticks, respectively. (B) Overlay of FAD/substrate of molecule A and B shown in yellow/green and orange/cyan, respectively.

Supplementary Figure S3: Occupancy determination at the four-time delays

Determination of the occupancy, corresponding to the inverse of the weighting factor α of the $\Delta \mathrm{t}$ _light structures with $\Delta t=20 \mathrm{ps}(A), 900 \mathrm{ps}(B), 300 \mathrm{~ns}(C$,$) at 2 \AA$ resolution and $\Delta t=2 \mu \mathrm{~s}$ (D) at $2.2 \AA$ resolution. The ratio of integrated peaks in the $m F_{\text {ext }}{ }^{\Delta t_{-} 300 n s}-D F_{\text {calc }}{ }^{\text {dark }}$ map and of integrated peaks in the $F_{\text {obs }}{ }^{\Delta \text { t_ light }}-F_{\text {obs }}{ }^{\text {dark }}$ maps, normalized to its maximum value, is plotted as a function of the occupancy. Only peaks around the fatty acid in the active site were used for α determination.

Supplementary Figure S4: Extrapolated electron density maps at 300 ns after omitting Wat2, and the side chains of W479 and R451

Extrapolated electron density maps $2 m F_{\text {ext }}{ }^{4 t-300 n s}-D F_{\text {calc }}\left(1\right.$ r.m.s.d., blue) and $m q F_{\text {ext }}{ }^{4 t-300 n s}-$ $D F_{\text {calc }}$ maps (+3 r.m.s.d., green; -3 r.m.s.d., red), calculated between the dark and the light data set at 300 ns and phased with a refined model from which the side chains of W479 (A, D) or R451 (B, E), or Wat2 (C, F) have been omitted. The dark state model (PDB entry code 6ZH7) is overlaid. Monomers A and B are shown in panels A, B, C and D, E, F respectively.

A

B

Supplementary Figure S5: Screenshot of cell_explorer from CrystFEL showing the unit cell parameter distributions for dark datasets resulting from processing with $\mathbf{P 2}_{1} \mathbf{2}_{1} 2_{1}(\mathrm{~A})$ and $P 2_{1}(B)$

All unit cell parameters could be well fitted according to a Gaussian distribution (red line) except for the α angle of the $P 2_{1} 2_{2} 2_{1}$ data (A) that featured a double peak centered at 89.3° and 90.5°.

Supplementary Figure S6: Stereographic projection of the self-rotation function of the

 dark dataset (PDB code 6ZH7)The self-rotation function of the FAP crystal was calculated using data in the $10-2.5 \AA$ resolution range and the 2 -fold $\left(\chi=180^{\circ}\right)$ section was plotted above a threshold of 25σ with increments of 0.9σ. The crystallographic axes are $\mathrm{c} / \mathrm{c}^{*}$ along z (center of the plot), $\mathrm{a} / \mathrm{a}^{*}$ along $\mathrm{x}(\theta=90, \varphi=0), \mathrm{b} / \mathrm{b}^{*}$ along y $(\theta=90, \varphi=90)$. The crystallographic axis of $P 2_{1}$ along $\mathrm{b} / \mathrm{b}^{*}$ is evident, as well as are peaks of similar height along $\mathrm{a} / \mathrm{a}^{*}$ that stem from NCS linking FAP molecules A and B within the asymmetric unit.

Supplementary Figure S7: Fourier difference map at $\mathbf{3 0 0} \mathbf{n s}$ in the asymmetric unit q-weighted Fourier difference electron density map calculated between the light and dark data sets $F_{\text {obs }}{ }^{4 t} 300{ }^{3}{ }^{-1}-F_{\text {obs }}{ }^{\text {dark }}$ at $2 \AA$ resolution. The map is shown at +3.5 r.m.s.d. (green) and -3.5 r.m.s.d. (red). FAD and the C18 fatty acid substrate are shown in yellow and green, respectively. The protein of monomer A is shown in grey.

Supplementary Figure S8: Unit cell content of dark-state $\mathbf{C v F A P}$ in the $\mathrm{P} 2_{1}$ space group (PDB entry code 6ZH7)

Monomers A and B in the asymmetric units i and ii are shown. The monomers are colored according to the distance between equivalent $\mathrm{C} \alpha$ atoms in monomers A and B as in Supplementary Figure S2.

Supplementary Figure S9: Crystal packing in $P 2_{1}$ and $P 2_{1} 2_{1} 2_{1}$ space groups
The crystal packings of dark-state CvFAP in the $P 2_{1}$ (yellow) and the $P 2_{1} 2_{1} 2_{1}$ (blue) space groups are shown. The unit cells are shown in red for both space groups: $a=61.4 \AA, b=60.0$ $\AA, c=182.9 \AA$ and $\alpha=90.0^{\circ}, \beta=90.6^{\circ}, \gamma=90.0^{\circ}$ for $P 2_{1}$ (Supplementary Table S1) and $a=$ $60.2 \AA, b=61.6 \AA, c=183.6 \AA$ and $\alpha, \beta, \gamma=90.0^{\circ}$ for $P 2_{1} 2_{1} 2_{1}$ (Supplementary Table S3). The superposition indicates that the $P 2_{1}$ packing is only a minor deviation from the $P 2_{1} 2_{1} 2_{1}$ packing.

