

Volume 78 (2022)
Supporting information for article:

Structural and biophysical studies of new l-asparaginase variants: lessons from random mutagenesis of the prototypic Escherichia coli Ntn-amidohydrolase

Joanna I. Loch, Agnieszka Klonecka, Kinga Kądziołka, Piotr Bonarek, Jakub Barciszewski, Barbara Imiolczyk, Krzysztof Brzezinski, Mirosław Gilski and Mariusz Jaskolski

A

B

C

Fig. S1. (A) Detailed sequence of the designed degenerate primers (N - random nucleotide) and their annealing to the PCR matrix. Nucleotides marked in pink encode amino acid residues at positions: 206, 207, 210 and 211, marked in orange boxes. (B) Graphical representation of the frequency of nucleotide substitutions in codon positions 206, 207, 210 and $211,(\mathrm{C})$ and the corresponding frequency of protein amino acid types. Nucleotides are colored according to their types: A (green), T (red), C (blue) and G (yellow). Amino acids are colored according to their chemical character: KRH (blue), DE (red), NQ (magenta), SCT (orange), YW (pink), G (black) and AVLIPM (green).

Fig. S2. SDS-PAGE gels after small-scale expression: selection of the clones after locally performed random mutagenesis (RDM1). Most of the clones were not processed for subunits α / β. The chart in the left top corner shows the events leading to the selection of proteins characterized in this work: 21 clones were selected for sequencing. Sequencing was successful for 15 variants (8 cleaved and 7 unprocessed, green boxes with gel lane numbers). Sequencing failed for clones $10,14,25$ and 58 (no annealing of the T 7 sequencing primers to the matrix; red boxes with gel lane numbers). One clone (33 , marked by black box) had an abortive STOP codon at position 207 . In the case of clone 62 (blue box), a mixture of plasmids was identified with substitutions: $206 \mathrm{~L} / \mathrm{M}, 207 \mathrm{~A} / \mathrm{S}, 210 \mathrm{~L} / \mathrm{N}, 211 \mathrm{R} / \mathrm{R}$.

Fig. S3. Far-UV CD spectra recorded for EcAIII variants. The variants are marked by color according to their number in Table 1. (A) Mutants processed for subunits α / β; (B) mutants incapable of autoprocessing.

Fig. S4. Normalized chromatograms from size exclusion chromatography (SEC) using a Superdex 75 10/300 GL column (GE Healthcare) obtained for RDM1 variants.

RDM1-42 (AlphaFold2) RDM1-43 (AlphaFold2) RDM1-46 (AlphaFold2) RDM1-64 (AlphaFold2)

Fig. S5. (A) Superposition of the five models obtained for mutant RDM1-64. (B) Superposition of AlphaFold2 predicted "monomeric" structures of all RDM1 variants unprocessed for subunits. (C) Conformation of residues 210 and 211 in variants RDM1-42, 43, 46 and 64. (D) Position and conformation of residues 206 and 207 in RDM1-42, 43, 46 and 64 . The color legend is presented in panel A and below panels B and C.

Fig. S6. Superposition of the AlphaFold2 predicted model of the uncleaved variant RDM1-43 (orange) and the crystal structure of variant RDM1-37, cleaved for subunits. Both variants have the same substitutions at positions 210 and 211. The fragment harboring residues 210-211 has almost identical conformation in the two structures. Some minor differences are visible in the region of substitutions 206-207.

Fig. S7. Superposition of the dimer subunits of EcAIII mutants. Subunits $(\alpha+\beta)$ of RDM1-8 (A), RDM1-12 (B) and RDM1-38 (C); the second structural ($\alpha+\beta$) unit of the dimer is shown in light color. In the structure RDM1-8 (A), the most significant differences are visible in the conformation of loop 116-120. In RDM1-12 (B), differences in the position of α-helix 147-159 and loops 116-120 and 200-208 can be detected. In RDM1-38 (C), loops 116-120 and 200-208 have similar conformation in both subunits, while the position of α-helix 147-159 differs significantly. In all panels, the mutation site 207 is marked in frame.

