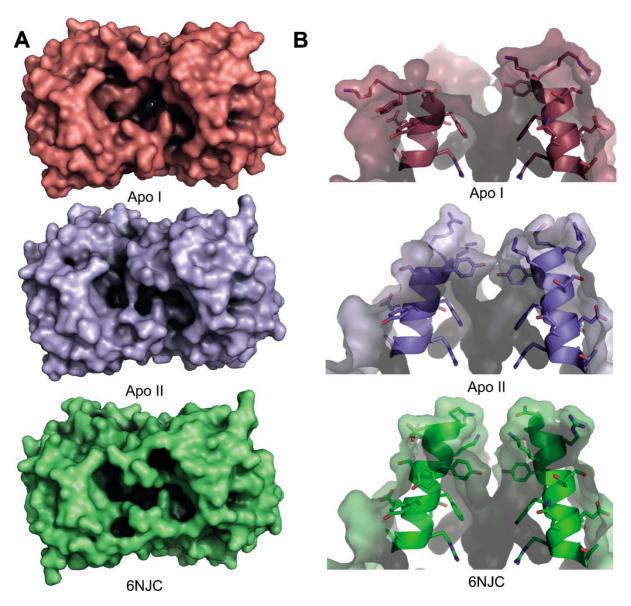


Volume 78 (2022)


Supporting information for article:

The structure of *Phocaeicola vulgatus* sialic acid acetylesterase

Hannah Scott, Gideon J. Davies and Zachary Armstrong

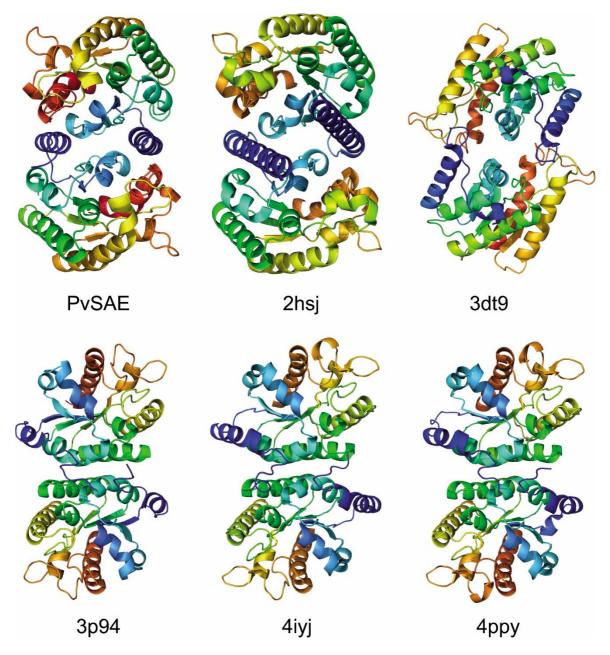
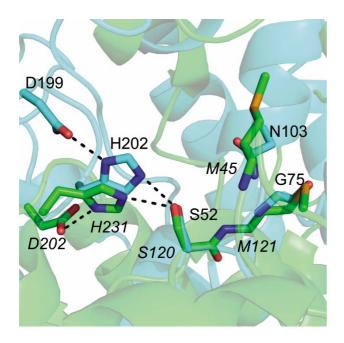
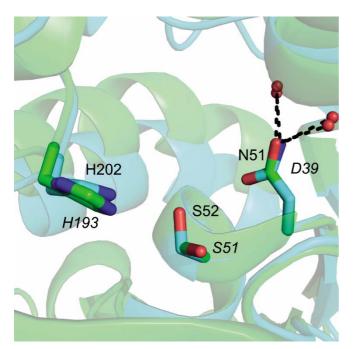
Description	Source	PBD	Z score	RMSD / Å	L-align	Identity / %
Putative platelet	Streptococcus	2hsj	27.4	1.7	194	28
activating factor	pneumonia	2113)				
GDSL-like lipase	Parabacteroides	3p94	24.7	2.0	183	25
	distasonis					
Putative acylhydrolase	Bacteroides	4рру	24.2	2.4	190	26
	fragilis	.66)				
GDSL-like protein	Bacteroides	4iyj	24.2	2.4	190	26
	uniformis					
Brain platelet-activating	Bos taurus	3dt9	22.3	2.1	185	20
factor acetylhydrolase						

Table S1Structurally homologous enzymes to the PvSAE Apo I structure, identified using theDALI server (Holm, 2020).

Figure S1 Conformational changes of the N-terminal α -helix. **A**) Surface representation of the Apo I, Apo II and 6njc structures as viewed from above the active site. **B**) The side view of the N-terminal helix from the same structures with residues present in the helix shown in stick representation.

PvSAE BfEstA pAF-AH	1 1 1	
EcNanS	1	MGSSHHHHHHGSNAIISPDYYYVLTVAGQSNAMAYGEGLPLPDREDAPHPRIKQLARFAH
PvSAE	1	ERKYSTFYEQRATLFEELPVTSKDIIFLGNS
BfEstA	1	MKKIFFLVVILTLSLLCRAQERKYSTFYYQRATLFEELPVTSSDIIFLGNSITNGAE-
pAF-AH	1	MSGDENPASKPTPVQDVQGDGRWMSLHHRFVADSKDKEPEVVFIGDSLVQLMHQ
EcNanS	61	THPGGPSCHFNDIIPLTHCPHDVQDMQSYHHPLATNHQTQYGTVGQALHIARKLLPFIPD
		Block II Block III
PvSAE		WAELFQNKNVKNRGISGDICMGVYDRLDPIVKGKPAKIFLLIGINDVSRGTSADK
BfEstA	58	WAELFKNKHVKNRGISGDICMGVYDRLDAILKGKPAKIFLLIGINDVSRGTPADT
pAF-AH	55	SEIWRELFSPLHALNFGIGGDSTQHVLWRLENGELEHIRPKIVVVWVGTNNHGHTAEQ
EcNanS	121	AGSEGTYSERHGASHDACRWGTDTP
PVSAE	93	IISEISMIVRKIKQESPKTKLYLQSVLPVNDCYGMFNGHTSRWQVVKQINDLL-EPLAV-
BfEstA	113	IVSRIEMIVRKIKADSPKTKLYLQSVLPVTDHYNMFKGHTSHWQVIPEINKGL-VGLAE-
pAF-AH	113	VTGGIKAIVQLVNERQPQARVVVLGLLPRGQHPNPLREKNRRVNELVRAALAG-
EcNanS	163	LYQDLVSRT <mark>R</mark> AALVKNPQN <mark>K-FL</mark> GVCWMQGEFDLMTSDYA <mark>SHPQ</mark> HFNHMVEAFRRDLKQY
		Block V
PvSAE	151	KEGVAYIDLYSHFVEKETGKMNPVYTNDGLHLLGKGYLLWRDIVKPYVDQK
BfEstA	171	KEGATYIDLYSHFIDKQTGKMNTTYTNDGLHLLGKGYLKWVEIVKPYIGKK
pAF-AH	166	HPRAHFLDADPGFVHSD-GTISHHDMYDYLHLSRLGYTPVCRALHSLLLRLLTQDQGQGG
EcNanS	222	HSQLNNITDAPWFCGDTTWYWKENFPHAYEAIYGNYQNNILANIIFVDFQQQGARG
PVSAE		
BfEstA		
pAF-AH	225	APLPEPSP
EcNanS		LTNAPDEDPDDLSTGYYGSAYRSPENWTTALRSSHFSSAARRGIISDRFVEAILQFWRER
*Residues in	cata	alytic triad

Figure S2 Amino acid sequence alignments for a range of 9-O-SAEs. Alignments include *Phocaeicola vulgatus* PvSAE (ABR41743.1), *Bacteroides fragilis* EstA (WP_100721746.11), *Bos taurus* pAF-AH (PDBID: 3DT6) and *E. coli* NanS (PDBID: 3PT5). Residues forming the catalytic Ser-His-Asp triad are indicated with a star above the amino acid.

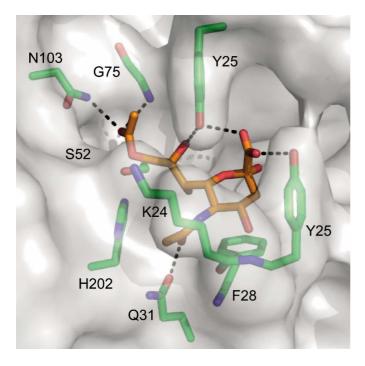

Figure S3 Dimer interfaces of PvSAE and homologs. Dimers are shown in cartoon representation and colored from the N-terminus (purple) to the C-terminus (red).

Figure S4 Active site overlay of PvSAE and *S. pneumonia* EstA (PDB: 2uz0)(Kim *et al.*, 2008) with active site residues shown as sticks. *S. pneumonia* EstA residues are labelled in italics and carbons are colored in green, while PvSAE carbons are cyan. Hydrogen bonds between the catalytic triad are shown as black dashed lines.

Figure S5 Active site overlay of PvSAE and *S. pneumonia* putative platelet activating factor (PDB-ID: 2hsj) with active site residues shown as sticks. *S. pneumonia* putative platelet activating factor residues are labelled in italics and carbons are colored in green, while PvSAE carbons are cyan. Hydrogen bonds between the catalytic triad are shown as black dashed lines.

Figure S6 Docking of 9-O-acetylsialic acid into the active site of the Apo II structure. Polar interactions within 3.2 Å are shown as black dashed lines.