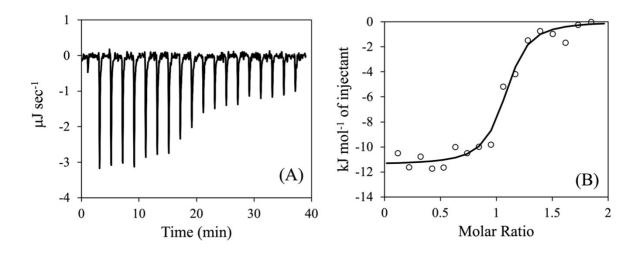


Volume 78 (2022)


Supporting information for article:

Pivotal role of a conserved histidine in *Escherichia coli* ribonuclease HI as proposed by X-ray crystallography

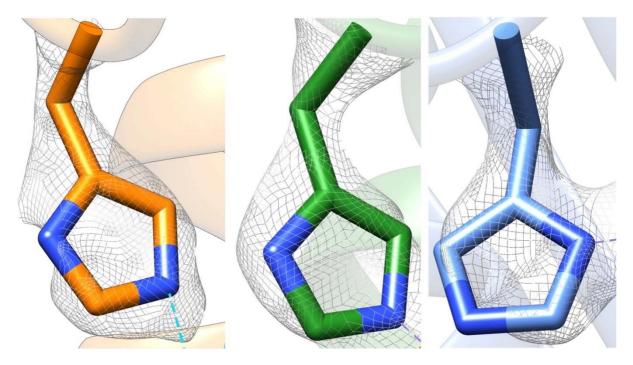

Zengwei Liao, Takuji Oyama, Yumi Kitagawa, Katsuo Katayanagi, Kosuke Morikawa and Masayuki Oda

Figure S1 Comparison of Mg²⁺ coordination patterns in the *E. coli* RNase HI crystal structures. Dark olive green: RNH_Mg_1, blue: RNH_Mg_2 Orange: RNH_Mg_3, cyan: one Mg²⁺ bound *E. coli* RNase HI (PDB entry 1RDD). Note that one Mg²⁺ position (upper right) of two Mg²⁺ sites looks like a single metal, because of nearly perfect overlapping.

Figure S2 ITC measurements of the interaction between RNase HI and Zn^{2+} . (A) The ZnCl₂ solution was injected into the RNase HI solution. (B) Integrated data was fitted using one-site model. The three independent experiments gave $n = 0.99 \pm 0.15$, $K_d = 1.09 (\pm 0.60) \mu$ M, and $\Delta H = 11.7 (\pm 0.6)$ kJ mol⁻¹.

Figure S3 $2F_{o}$ - F_{c} electron density maps (level: 1.3 σ) of His124 in RNH_Mg_3, RNH_Zn_1 and RNH_Zn_2 respectively. The His124 in each structure is zoomed in and the angle is adjusted to show the complete map of the whole imidazole sidechain.