

Volume 78 (2022)

Supporting information for article:

Structural snapshot of a glycoside hydrolase family 8 endo-β-1,4glucanase capturing the state after cleavage of the scissile bond

Takaaki Fujiwara, Ayumi Fujishima, Yui Nakamura, Kenji Tajima and Min Yao

Figure S1. Multiple sequence alignment of *Eb*BcsZ (GenBank: BAM44856.1), *Ec*BcsZ (GenBank: AAB76556.1), and CMCax (GenBank: AAA16969.1). The asterisks (green) and triangles (blue) represent the residues located around the catalytic site of *Eb*BcsZ and catalytic residues, respectively.

Figure S2. Conformation of pyranose represented by Cremer-Pople sphere (upper) and Mercator representation (lower). Cremer-Pople parameters ϕ , θ , and Q are also displayed (Cremer and Pople, 1975). The conformation of pyranose is represented by the puckering parameters, ϕ , θ , and Q, which shows 38 different conformers.

Figure S3. The structures of cellooligosaccharides bound to monomer A in $EbBcsZ(D242A)_{CPT}$. (a) The omit map of cellooligosaccharides contoured at 3.0 σ . (b) Close-up view of G₋₁ in (a). (c) Superposed view of glucosyl units. Superposition of G₋₁ (green) and G₋₂ (light gray) in $EbCeSZ(D242A)_{CPT}$ and G₋₁ in $CtCelA(E95Q)_{CPT}$ (yellow).

Figure S4. Glycerols bound to the active site in *Eb*BcsZ. (a) The conformation of bound glycerols around the subsites -2, -1, and +1. The glycerols bound to monomers A, B, C, and D of the asymmetric unit were superposed and shown in green, gray, purple, and orange, respectively. Oxygen atoms are red. (b) Stereo view of the superposition of G₋₁ (dark green) and glycerol (gray) in the subsite -1 (upper). Water molecules overlapped on the 1-OH and 2-OH of G₋₁ appear as yellow spheres. Oxygen atoms are red. The close up view of glycerol located at the subsite -1 of monomer A with the omit map contoured at 4.0 σ (lower).

Figure S5. The molecules in the asymmetric unit of $EbBcsZ(D242A)_{CPT}$. Dotted lines (red) represent the secondary binding site of each monomer in the asymmetric unit. The cellooligosaccharides appear as sticks.

Figure S6. Superposed structures of $EbBcsZ(D242A)_{CPT}$ and $EbBcsZ_{GOL}$. $EbBcsZ(D242A)_{CPT}$ (light blue) and $EbBcsZ_{GOL}$ (light green) represented as ribbon. The cellooligosaccharides (blue) and the residues (Asp242, D242A, and Arg245) are represented as sticks.

	subsite -	Creme	C		
monomer		φ(°)	$ heta(\circ)$	$Q(\text{\AA})$	conformation
А	-4	30.6	7.8	0.54	${}^{4}C_{1}$
	-3	306.6	7.5	0.57	${}^{4}C_{1}$
	-2	38.0	4.1	0.61	${}^{4}C_{1}$
	-1	97.6	78.3	0.81	${}^{5}S_{1}$
	+1	355.2	1.9	0.60	${}^{4}C_{1}$
	+2	82.9	27.0	0.51	${}^{4}C_{1}$
В	-4	307.9	8.1	0.58	${}^{4}C_{1}$
	-3	315.3	8.1	0.57	${}^{4}C_{1}$
	-2	355.2	7.0	0.64	${}^{4}C_{1}$
	-1	95.8	85.0	0.74	${}^{5}S_{1}$
	+1	278.0	7.1	0.62	${}^{4}C_{1}$
	+2	79.1	2.8	0.57	${}^{4}C_{1}$
С	-4	10.5	8.1	0.51	${}^{4}C_{1}$
	-3	303.1	7.2	0.62	${}^{4}C_{1}$
	-2	54.2	6.2	0.58	${}^{4}C_{1}$
	-1	99.1	81.9	0.82	${}^{5}S_{1}$
	+1	234.6	12.6	0.57	${}^{4}C_{1}$
	+2	23.4	4.4	0.55	${}^{4}C_{1}$
D	-4	73.8	3.5	0.52	${}^{4}C_{1}$
	-3	319.4	5.7	0.61	${}^{4}C_{1}$
	-2	357.7	4.2	0.59	${}^{4}C_{1}$
	+1	154.6	2.0	0.57	${}^{4}C_{1}$
	+2	106.7	4.0	0.55	${}^{4}C_{1}$

Table S1. Cremer-Pople parameters

Table S2. Distances between oxygen atoms of glycerols and waters in *Eb*BcsZ_{GOL} and five oxygen atoms of G₋₁ in *Eb*BcsZ(D242A)_{CPT}

		1	02 (2-011)		1. (8)
<i>Eb</i> BcsZ _{GOL}	<i>Eb</i> BcsZ(D242A) _{CPT}	distance (A)	<i>Eb</i> BcsZ _{GOL}	<i>Eb</i> BcsZ(D242A) _{CPT}	distance (A)
monomer A	monomer A	0.96	monomerA	monomer A	0.22
	monomer B	0.68		monomer B	0.84
	monomer C	0.84		monomer C	0.20
monomer B	monomer A	1.05	monomer B	monomer A	0.20
	monomer B	0.75		monomer B	0.94
	monomer C	0.93		monomer C	0.20
monomer C	monomer A	0.97	monomer C	monomer A	0.23
	monomer B	0.69		monomer B	0.81
	monomer C	0.84		monomer C	0.15
monomer D	monomer A	0.98	monomer D	monomer A	0.08
	monomer B	0.67		monomer B	0.84
	monomer C	0.86		monomer C	0.06
		0.85 ± 0.13			0.40 ± 0.34
O3 (3-OH)			O5		
<i>Eb</i> BcsZ _{GOL}	EbBcsZ(D242A) _{CPT}	distance (Å)	$EbBcsZ_{GOL}$	EbBcsZ(D242A) _{CPT}	distance (Å)
monomer A	monomer A	0.39	monomer A	monomer A	1.04
	monomer B	0.42		monomer B	1.41
	monomer C	0.37		monomer C	1.17
monomer B	monomer A	0.34	monomer B	monomer A	0.92
	monomer B	0.33		monomer B	1.29
	monomer C	0.31		monomer C	1.04
monomer C	monomer A	0.36	monomer C	monomer A	0.87
	monomer B	0.35		monomer B	1.23
	monomer C	0.32		monomer C	0.99
monomer D	monomer A	0.33	monomer D	monomer A	0.92
	monomer B	0.35		monomer B	1.29
	monomer C	0.29		monomer C	1.05

O6 (6-OH)		
$EbBcsZ_{GOL}$	EbBcsZ(D242A) _{CPT}	distance (Å)
monomer A	monomer A	0.24
	monomer B	0.16
	monomer C	0.23
monomer B	monomer A	0.26
	monomer B	0.17
	monomer C	0.31
monomer C	monomer A	0.22
	monomer B	0.14
	monomer C	0.26
monomer D	monomer A	0.27
	monomer B	0.17
	monomer C	0.33
		0.23 ± 0.06