Volume 77 (2021) **Supporting information for article:** The impact of folding modes and deuteration on the atomic resolution structure of hen egg-white lysozyme Joao Ramos, Valerie Laux, Michael Haertlein, V. Trevor Forsyth, Estelle Mossou, Sine Larsen and Annette E. Langkilde **Table S1** Melting temperatures and respective standard uncertainties measured by DSF for the three HEWL variants in D₂O and H₂O buffer at pH/pD 4.5 and 7.5. | Buffers | T _m (°C) | | | |--|---------------------|----------------|----------------| | | H-HEWL | H-HEWLEC | D-HEWLEC | | D ₂ O sodium acetate pD 4.5 | 78.5 ± 0.2 | 73.9 ± 0.1 | 72.2 ± 0.1 | | H ₂ O sodium acetate pH 4.5 | 76.4 ± 0.1 | 71.7 ± 0.1 | 69.9 ± 0.4 | | D ₂ O sodium phosphate pD 7.5 | 75.3 ± 0.2 | 71.4 ± 0.1 | 70.0 ± 0.2 | | H ₂ O sodium phosphate pH 7.5 | 72.7 ± 0.3 | 68.8 ± 0.1 | 67.3 ± 0.3 | **Figure S1** Cartoon representation of the native H-HEWL structure, highlighting its folding domains. The α -domain is colored in red and comprises the α -helices A-D and the Asp119-Arg125 3¹⁰-helix. The β-domain is colored in blue, including the triple-stranded antiparallel β-sheet and the Pro79-Ser85 3¹⁰-helix. This illustration was produced using PyMOL (version 2.0, Schrödinger). **Figure S2** Measured activity rates of H-HEWL, H-HEWL_{EC} and D-HEWL_{EC}, at 25° C, in H₂O buffer solutions at pH 7.5. H-HEWL showed an activity rate of 4172 \pm 473 U/mg, while H-HEWL_{EC} and D-HEWL_{EC} displayed activities rates of 2765 \pm 507 U/mg and 2864 \pm 365 U/mg, respectively. **Figure S3** Refined occupancies of protein residues' conformation A for H-HEWL and H-HEWL_{EC}, highlighting their differences in structural disorder. Figure S4 Mean residue B-factor for the main-chain atoms of H-HEWL and H-HEWL_{EC}. **Figure S5** Backbone disorder of the Lys97-Gly104 loop and complete Asn103 peptide-plane flip in H-HEWL_{EC}. The 2Fo-Fc electron density map was contoured at 1 σ . The positive (green) and negative (red) Fo-Fc electrons density maps were contoured at +3 σ and -3 σ , respectively. This illustration was produced using PyMOL (version 2.0, Schrödinger). **Figure S6** Localization and respective H-bond interactions of the water molecules in native H-HEWL structures (at 100 K, PDB entries 1iee, 3wl2, 6f1o, and room temperature, PDB entry 1bwj) that help stabilize the configuration of the Lys97-Gly104 loop. Water molecules 1010, 312, 316, and 148, of tetragonal 1iee, monoclinic 3wl2, orthorhombic 6f1o, and tetragonal 1bwj, respectively, are shown. Dashed lines indicate the H-bonding patterns between these water molecules and Val99 O, Gly102 N(H), and Gly104 N(H). This illustration was produced using PyMOL (version 2.0, Schrödinger). **Figure S7** Representation of the H-bond interactions of Thr47 conformations A and B via crystal contacts, which promote the backbone disorder in the Thr47-Gly49 region in H-HEWL_{EC}. The residues (carbon atoms) and water molecules belonging to adjacent unit cells are colored in grey. This illustration was produced using PyMOL (version 2.0, Schrödinger). **Figure S8** Alternate conformations of Asn44 and W387 found in the H-HEWL_{EC} structure (a), with corresponding active site H-bond interactions (b). The 2Fo-Fc electron density map was contoured at 1 σ . This illustration was produced using PyMOL (version 2.0, Schrödinger). **Figure S9** Superposed chromatograms of the refolding gel filtrations of D-HEWL $_{EC}$ and H-HEWL $_{EC}$. Figure \$10 Multiple sequence alignment of HEWL (Gallus gallus) with other c-type lysozymes (performed in COBALT; https://www.ncbi.nlm.nih.gov/tools/cobalt/re cobalt.cgi), highlighting high sequence homology and the conservation of residue Asp101.