
Volume 77 (2021)

Supporting information for article:

Cryo-EM single-particle structure refinement and map calculation using Servalcat


Keitaro Yamashita, Colin M. Palmer, Tom Burnley and Garib N. Murshudov

Fig. S1: Comparison of weighting and sharpening scheme for Fig. 2a (PDB 7kjr/EMD-22898 at 2.08 Å). (a) Weighted and sharpened map using (17). (b) No FSC-based weights, and sharpening by B value determined by PostProcess in RELION; $(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with B=-34.5 Ų. (c) Using postprocess.mrc; $\sqrt{\rm FSC_{full}}(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with the same B. The $F_{\rm o}-F_{\rm c}$ omit maps are contoured at 3σ (scaled within the mask). The ligand molecule shown as sticks are omitted in the map calculation.

(c) FSC weighted, sharpened by $B_{\rm PostProcess}$

Fig. S2: Comparison of weighting and sharpening scheme for Fig. 2b (PDB 5it7/EMD-8123 at 3.6 Å). (a) Weighted and sharpened map using (17). (b) No FSC-based weights, and sharpening by B value determined by PostProcess in RELION; $(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with B=-150.1 Å². (c) Using postprocess.mrc; $\sqrt{\rm FSC}_{\rm full}(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with the same B. The $F_{\rm o}-F_{\rm c}$ omit maps are contoured at 3σ (scaled within the mask). The ligand molecules and ions shown as sticks and spheres, respectively, are omitted in the map calculation.

(c) FSC weighted, sharpened by $B_{\text{PostProcess}}$

Fig. S3: Comparison of weighting and sharpening scheme for Fig. 3 (PDB 6lmt/EMD-0919 at 2.66 Å). (a) Weighted and sharpened maps using (18) and (17). (b) No FSC-based weights, and sharpening by B value determined by PostProcess in RELION; $F_{\rm o}/e^{-B|s|^2/4}$ and $(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with B=-74.0 Å². (c) Using postprocess.mrc; $\sqrt{\rm FSC}_{\rm full}F_{\rm o}/e^{-B|s|^2/4}$ and $\sqrt{\rm FSC}_{\rm full}(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with the same B. The $F_{\rm o}-F_{\rm c}$ maps are contoured at $\pm 4\sigma$ (scaled within the mask). The contouring levels of $F_{\rm o}$ maps are adjusted to give similar appearance to (a).

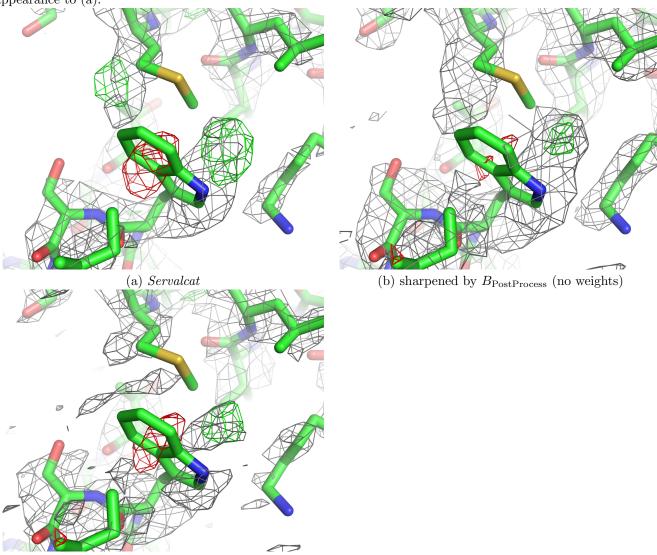
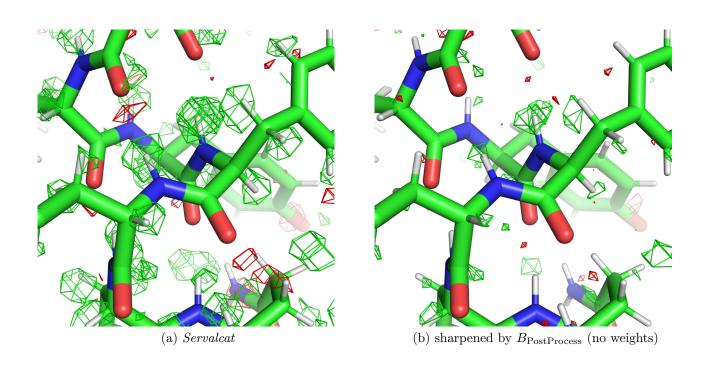



Fig. S4: Comparison of weighting and sharpening scheme for Fig. 5a (PDB 6z6u/EMD-11103 at 1.25 Å). (a) Weighted and sharpened map using (17). (b) No FSC-based weights, and sharpening by B value determined by PostProcess in RELION; $(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with B=-33.4 Å². (c) Using postprocess.mrc; $\sqrt{\rm FSC}_{\rm full}(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with the same B. The $F_{\rm o}-F_{\rm c}$ maps are contoured at $\pm 3\sigma$ (scaled within the mask).

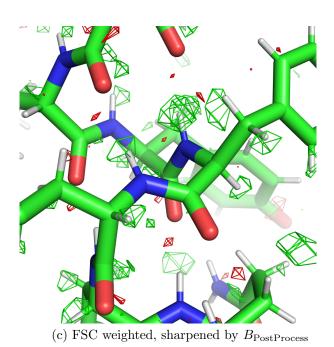
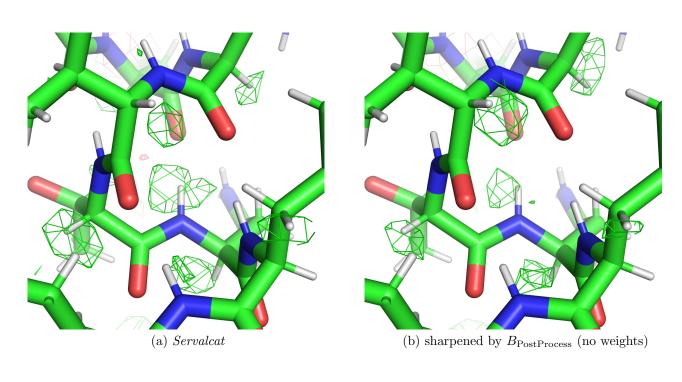



Fig. S5: Comparison of weighting and sharpening scheme for Fig. 5b (PDB 6s61/EMD-10101 at 1.84 Å). (a) Weighted and sharpened map using (17). (b) No FSC-based weights, and sharpening by B value determined by PostProcess in RELION; $(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with B=-70.9 Ų. (c) Using postprocess.mrc; $\sqrt{\rm FSC}_{\rm full}(F_{\rm o}-DF_{\rm c})/e^{-B|s|^2/4}$ with the same B. The $F_{\rm o}-F_{\rm c}$ maps are contoured at $\pm 3\sigma$ (scaled within the mask).

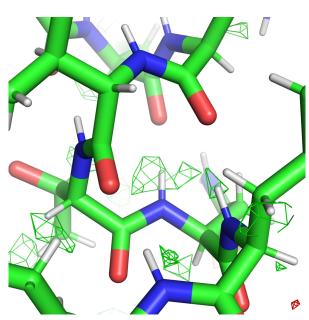
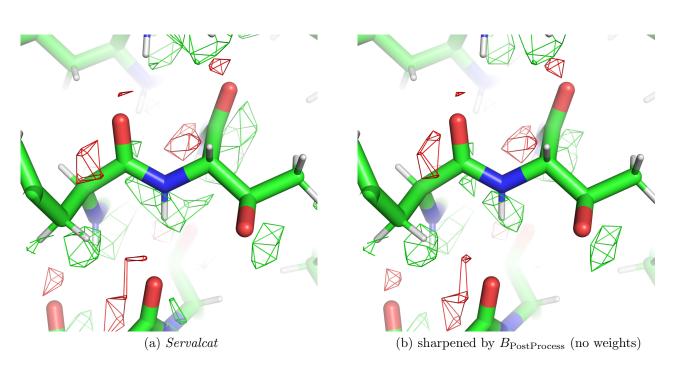
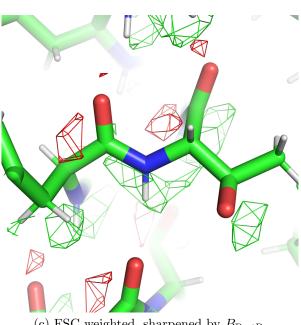




Fig. S6: Comparison of weighting and sharpening scheme for Fig. 5c (PDB 6wx6/EMD-21951 at 2.00 Å). (a) Weighted and sharpened map using (17). (b) No FSC-based weights, and sharpening by B value determined by PostProcess in RELION; $(F_{\rm o} - DF_{\rm c})/e^{-B|s|^2/4}$ with B = -98.6 Å². (c) Using postprocess.mrc; $\sqrt{\rm FSC_{full}}(F_{\rm o} - DF_{\rm c})/e^{-B|s|^2/4}$ with the same B. The $F_{\rm o} - F_{\rm c}$ maps are contoured at $\pm 3\sigma$ (scaled within the mask).

