

Volume 77 (2021)

Supporting information for article:

Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking

Alexander Metz, Jan Wollenhaupt, Steffen Glöckner, Niki Messini, Simon Huber, Tatjana Barthel, Ahmed Mehrabed, Hans-Dieter Gerber, Andreas Heine, Gerhard Klebe and Manfred S. Weiss

Follow-Up Compound	LE ^[a]	<i>Κ</i> _ď ^[b] [μΜ]	CAS Number	Salt	Provider	Provider Catalog ID	Purity ^[c] [%]
FU₅-1 · HCl	0.39	6.4	40227-56-3	1xHCI resynthesized		resynthesized	98.5 ^[d]
FU₅-1	[e]	[e]	46886-52-6	Vitas-M		STL231607	90 ^[f]
FU₅-2	0.37	970	3468-11-09		AK Scientific	P175	95
FU₅-3	0.39	740	14352-51-3		ENAMINE	EN300-43093	90
FU₅-4	0.31	400	879916-45-7		Vitas-M	STK594879	90 ^[f]
FU₅-5			571161-36-9		Vitas-M	STK583580	90 ^[f]
FU ₄₁ -1			919949-40-9		ENAMINE	Z106906918	90
FU ₄₁ -2			1007745-42-7		UORSY	PB106986608	n/a
FU ₄₁ -3			850020-65-4		ENAMINE	Z46204096	90
FU ₄₁ -4			1105566-03-7		ENAMINE	Z46442873	90 ^[f]
FU ₄₁ -5			702651-79-4		ChemDiv	C094-0062	n/a ^[f]
FU ₄₁ -6			793678-62-3	ENAMINE		Z44502465	90
FU ₅₈ -1	0.17	450	1377929-97-9		ChemBridge	57162056	90
FU ₅₈ -2			1331991-20-8		ChemBridge	69271435	n/a
FU ₅₈ -3	(0.19) ^[g]	(1040) ^[g]	1244921-80-9		ChemBridge	58887845	90
FU ₅₈ -4			1360217-23-7		ChemBridge	22615646	90
FU ₅₈ -5			1332207-28-9		ChemBridge 55009691		n/a
FU ₅₈ -6			1378100-25-4		ChemBridge 1710424		n/a
FU ₅₈ -7			1269257-22-8		ChemBridge	33257899	n/a
FU ₅₈ -8			1005631-30-0		Vitas-M	STL398417	n/a ^[f]
FU ₅₈ -9			1355873-93-6	ENAMINE		Z1156178129	90
FU ₆₆ -1	0.21	160	1355830-29-3		ENAMINE	Z906038686	90
FU ₆₆ -2			2034580-57-7		Life Chemicals	F6482-6629	90
FU ₆₆ -3			2034475-57-3		Life Chemicals	F6482-6686	90
FU ₆₆ -4			2034307-19-0		Life Chemicals	F6482-6819	90
FU ₆₆ -5			1375192-22-5		ENAMINE	Z908233534	90
FU ₆₆ -6			1375215-10-3		ENAMINE	Z907996506	90
FU ₂₉₀ -1	0.44	7.2	10465-18-6	2xHCl	2xHCI ChemBridge		90 ^[f]
FU ₂₉₀ -2	0.40	160	1417634-38-8	1xHBr	Vitas-M	STL301596	n/a

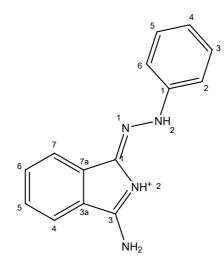
Table S1. Acquired follow-up candidates, affinities, providers and purities.

[a] Ligand efficiency in kcal mol⁻¹ atom⁻¹

[b] K_d value determined by ITC

[c] Purity reported by MolPort if not stated otherwise. "n/a": no purity information available

[d] Determined by ¹H-qNMR


[e] Affinity only determined for resynthesized $FU_{5}\mbox{--}1\ \cdot\ {\rm HCl}$

[f] Identity verified by NMR provided by vendor

[g] Measurement is not reliable as crystallographic finding indicates only binding of impurity

Synthesis of compound FU₅-1

i.e. (Z)-3-amino-1-(2-phenylhydrazineylidene)-1H-isoindol-2-ium chloride

(Z)-3-amino-1-(2-phenylhydrazineylidene)-1 H-isoindol-2-ium Chemical Formula: C₁₄H₁₃N₄⁺ Exact Mass: 237.11 Molecular Weight: 237.29 m/z: 237.11 (100.0%), 238.12 (15.1%), 238.11 (1.5%), 239.12 (1.1%) Elemental Analysis: C, 70.87; H, 5.52; N, 23.61

The target compound ($FU_5-1 \cdot HCl$) was prepared by a slightly modified literature procedure (Biitseva et al. 2013, Wolf, W. & Vollmann, H. 1956) as follows:

A stirred mixture of 1,3-diiminoisoindole (0.73 g, 5.0 mmol) and phenylhydrazine (0.54 g, 5.0 mmol) in MeOH (30 mL) was refluxed for 2 h. After cooling to RT, aqueous 1 M HCl (60 mL, 60 mmol) was added and the mixture stirred for 15 min at RT. The resulting yellow-orange precipitate was filtered through a glass filter (G3), thoroughly washed with water, then with a 1:1 mixture of water/MeOH and finally dried *in vacuo* over P_4O_{10} giving rise to 0.92 g (67.5 %) of a yellow-orange solid.

m.p. 228 °C (decomp.; (Biitseva *et al.*, 2013): 172 °C); at ca. 175 °C morphism into needles! ¹H NMR (DMSO- d_6 , 500.1 MHz): δ = 13.30 (bs, 1H), 11.41 (bs, 1H), 10.61 and 10.36 (2 x bs, merged, 2H), 8.29 (d, ${}^{3}J_{\text{H,H}}$ = 7.8 Hz, 1H), 7.97 (d, ${}^{3}J_{\text{H,H}}$ = 7.6 Hz, 1H), 7.82 (t, ${}^{3}J_{\text{H,H}}$ = 7.8 Hz, 1H), 7.65 (t, ${}^{3}J_{\text{H,H}}$ = 7.6 Hz, 1H), 7.37-7.27 (m, 4 H), 6.95-6.87 (sm, 1H). ¹³C NMR (DMSO- d_6 , 100.5 MHz): δ = 158.6, 144.0, 134.4, 134.2, 131.2, 129.2, 129.1, 125.7, 124.2, 120.7, 120.5, 112.7. MS (ESI+) m/z (%): 237 (93) [M]⁺. HRMS (ESI+): m/z calculated for C₁₄H₁₃N₄⁺ 237.1135 [M]⁺; found 237.1139. Elemental analysis calculated (%) for C₁₄H₁₃N₄Cl (272.74): C 61.65, H 4.80, N 20.54, Cl, 13.00; found: C, 61.13; H, 5.04; N, 20.27; Cl, 12.86

Substance assay, determined by ¹H qNMR (DMSO- d_6 , 500.1 MHz, reference standard maleic acid TraceCert[®]): 98.5 %

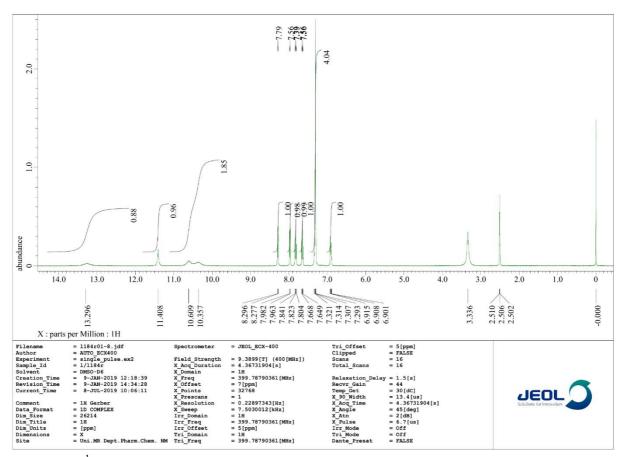


Figure S1. ¹H NMR spectrum of FU₅-1 \cdot HCl.

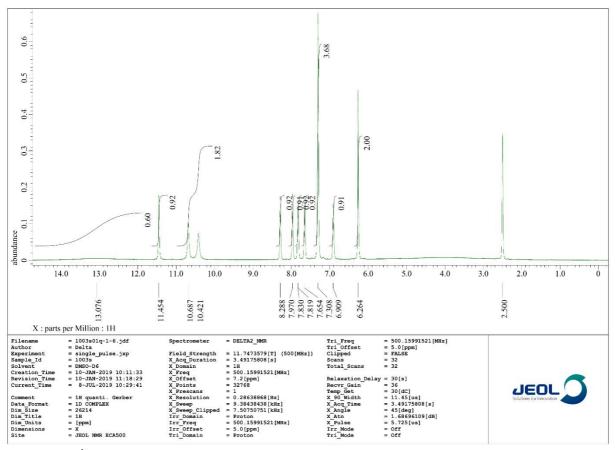


Figure S2. ¹H qNMR spectrum of $FU_5-1 \cdot HCl$.

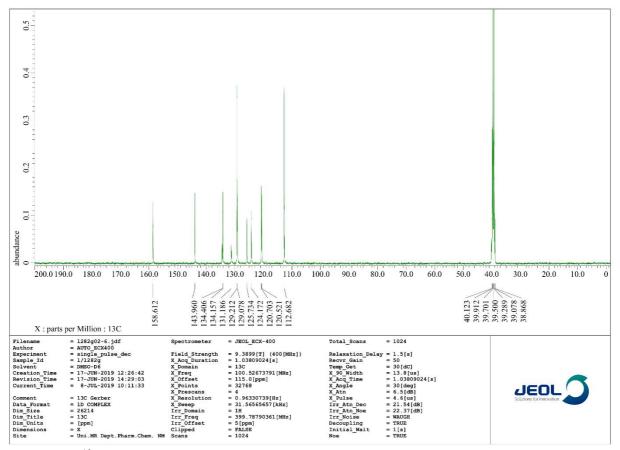


Figure S3. ¹³C NMR spectrum of FU₅-1 · HCl.

Table S2. Details of ITC measurements.
--

Follow-Up Titration Compound Type		Protein Concentration in Cell	Follow-Up Ligand Concentration in Cell	Ligand Concentration in Syringe	Final Stoichiometry (Ligand:Protein)
FU₅-1 · HCI	direct	25 µM ^[a]	-	500 µM ^[a]	4
FU₅-2	displacement	50 µM	2000 µM	500 µM	2
FU₅-3	displacement	50 µM	2000 µM	500 µM	2
FU₅-4	direct	50 µM	_	2000 µM	8
FU ₅₈ -1	displacement	50 µM	2000 µM	500 µM	2
FU ₅₈ -2 ^[b]	_	_	_	_	_
FU ₅₈ -3	displacement	50 µM	2000 µM	500 µM	2
FU ₆₆ -1 displacement		50 µM	2000 µM	500 µM	2
FU ₂₉₀ -1	FU ₂₉₀ -1 direct		_	1000 µM	4
FU ₂₉₀ -2 displacement		50 µM	2000 µM	500 µM	2

[a] 0.1% (v/v) Tween 20 in syringe and cell.

[b] Not enough substance available for ITC.

Compound	Global reduced chi-square ^[a]	Weighted local rmsd ^[a]	Stochiometry ^[b] (B:A)	n ^[c]	<i>K_d</i> [μM] (SD) ^[d]
FU₅-1 ^[e]	0.026	28.6	0.875	25	6.4 (± 0.06)
FU₅-1 ^[e]	0.024	38.7	0.915	25	6.4 (± 0.06)
FU₅-1 ^[e]	0.003	37.7	0.858	25	6.4 (± 0.06)
FU₅-2	0.228	135.3	0.991	25	970 (± 79)
FU₅-2	0.357	268.2	0.972	25	970 (± 79)
FU₅-2	0.284	238.2	1.018	25	970 (± 79)
FU₅-3	0.107	240.5	1.052	13	740
FU₅-4	0.014	18.6	1.000 ^[g]	38	400
FU₅8-1	0.134	197.5	1.081	24	450
FU₅8-3	0.498	396.7	1.068	24	1040
FU ₆₆ -1	0.052	226.0	1.142	24	160
FU ₂₉₀ -1	0.075	186.9	0.816	74	7.2
FU ₂₉₀ -2	0.065	41.4	0.871	25	160
Reference (SAP114)	0.346	193.2	1.001	24	680

Isotherm fitting statistics of ITC data, analyzed via SEDPHAT 10.58d (Houtman *et al.*, 2007). [a] Goodness of fit parameters (global reduced chi-square and weighted local rmsd) determined with SEDPHAT 10.58d are comparable to those listed for the established reference compound SAP114.

[b] Stochiometry of the ligand protein A and the ligand B at the inflection point of the sigmoidal fitting curve

[c] Number of used data points corresponding to injections of the ITC experiment

[d] K_d values. Standard deviation (SD) is only listed for FU₅-1 and FU₅-2, which were measured as triplicates.

[e] For FU₅-1, global reduced chi-square and weighted local rmsd are listed for comparison only and the listed K_d value was determined by global fit with the AFFINImeter suite (version 2.1710; Muñoz & Piñeiro, 2018).

[f] For FU₅-4 the stoichiometry was fixed to a value of 1 to achieve a satisfactory fit

 ΔH and $T\Delta S$ values are not reported for this experiment following the reasoning of Krimmer and Klebe (2015).

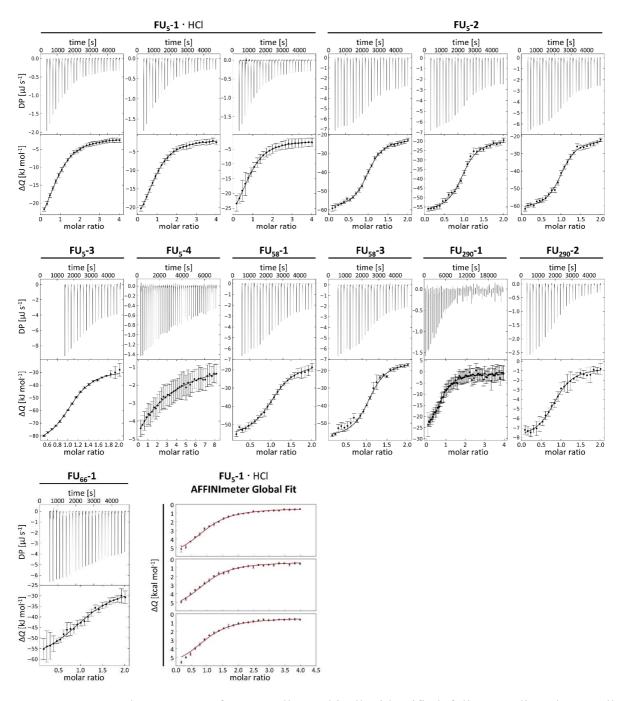


Figure S4. ITC thermograms for crystallographically identified follow-up ligands. In all cases, the heat signals DP (in μ J s⁻¹) as a response by the release of the ligand into the protein solution is shown over the course of the experiment along with the integrated heat signals of the injections ΔQ (in kJ mol⁻¹). FU₅-1 · HCl and FU₅-2 were measured in triplicate, all other ligands as single measurements (n = 1), in due regard of the limited resilience of the results of the latter. The noisy baseline of the ITC experiments for FU₂₉₀-1 was allegedly due to its low purity (> 90% according to provider) and could not be further improved.

Mass Spectrometry Analysis of FU₅₈-3

Clear difference electron density and steric constraints in the crystal structure obtained by soaking FU_{58} -3 showed that FU_{58} -3b had bound instead. The presence of FU_{58} -3b in the commercially obtained sample of FU_{58} -3 (> 90% according to provider (ChemBridge, USA)) was demonstrated by mass spectrometry (MS) experiments (Figure S6) using a Q-Trap 2000 (Applied Biosystems, USA).

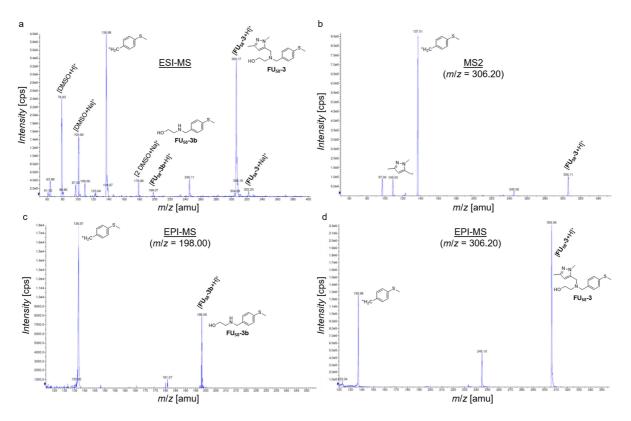


Figure S5. Mass spectrometry results of commercially obtained sample of FU₅₈-3. a) ESI-MS. b) MS2. c) EPI-MS targeting m/z = 198.00. c) EPI-MS targeting m/z = 306.20.

In detail, FU₅₈-3 was dissolved in methanol from 1 M DMSO stock and characterized by electrospray ionization (ESI) MS (Figure S6a). This demonstrated the presence of FU₅₈-3 (calcd. for $C_{16}H_{24}N_3OS [M+H]^+$ 306.16, found m/z = 306.17) and its substructure FU₅₈-3b (2-((4-(methylthio)benzyl)amino)ethan-1-ol) (calcd. for $C_{10}H_{16}NOS [M+H]^+$ 198.09, found m/z = 198.07). In addition, MS2 targeting FU₅₈-3 (m/z = 306.20; Figure S6b) demonstrated its presence (m/z = 306.11) as well as the presence of its fragmentation products (4-(methylthio)phenyl)methylium (calcd. for C₈H₉S $[M]^+$ 137.04, found m/z = 137.01) and (1,3dimethyl-1H-pyrazol-5-yl)methylium (calcd. for C₆H₉N₂ $[M]^+$ 109.08, found m/z = 109.03). However, FU₅₈-3b was not observed in this MS2 experiment. Finally, FU₅₈-3b was clearly observed in enhanced product ion (EPI) MS targeting m/z = 306.20 (Figure S6c) but not in the EPI MS targeting m/z = 198.00 (Figure S6d). This indicates FU₅₈-3b is not a decomposition fragment of FU₅₈-3 but instead an impurity of the obtained substance. As a side note, 4-(methylthio)benzylamine (calcd. for $C_8H_{12}NS [M+H]^+$ 154.07), which could partially have matched the observed electron density, was not observed in any of the MS experiments. Thus, only FU₅₈-3b was unambiguously attributed to the electron density and built into the crystal structure obtained by soaking FU₅₈-3 (PDB ID: 5SAQ).

Starting Fragment	Follow-Up	frogmont core at	# of FlexX poses	successfully HYDE-scored poses	HYDE-scored poses without bad clashes/ torsions	RMSD to crystallographic pose < 2 Å			
		fragment core at similar position as starting fragment?				total	in top 10 scored	in top3 scored	
F005	FU₅-1	yes	500	405	403	59	0	0	
	FU₅-2	yes	500	450	442	68	0	0	
	FU₅-3	yes	467	413	412	71	0	0	
	FU₅-4	no	448	381	378	0	0	0	
F058	FU ₅₈ -1	no	235	125	113	0	0	0	
	FU ₅₈ -2	no	403	319	287	0	0	0	
F066	FU ₆₆ -1	no	333	202	127	0	0	0	
F290	FU ₂₉₀ -1	yes	386	343	236	0	0	0	
	FU ₂₉₀ -2	yes	500	440	398	25	3	0	

Table S4. Retrospective, unbiased docking of follow-up compounds.

Supplementary references

Biitseva, A., Groth, U. & Hordiyenko, O. (2013). J. Heterocyclic Chem. 50, 1140-1145

Wolf, W. & Vollmann, H. (1956). German Patent DE 941845

Krimmer, S. G. & Klebe, G. (2015). J. Comput. Mol. Des. 29, 867-883.