

Volume 77 (2021)

Supporting information for article:

New restraints and validation approaches for nucleic acid structures in *PDB-REDO*

Ida de Vries, Tim Kwakman, Xiang-Jun Lu, Maarten L. Hekkelman, Mandar Deshpande, Sameer Velankar, Anastassis Perrakis and Robbie P. Joosten

	base pairs	base pairs	base pairs	base pairs
12207	8100	2847	653	607
235	16	209	2	8
166	24	139	0	3
112	96	15	0	1
115	9	96	0	10
83	13	64	1	5
44	7	37	0	0
30	9	10	0	11
41	41	0	0	0
27	10	14	0	3
22	2	20	0	0
1	0	0	0	0
4030	1939	1770	41	280
	12207 235 166 112 115 83 44 30 41 27 22 1 1 4030	base pairs12207810023516166241129611598313447309414127102221040301939	base pairsbase pairsbase pairs12207810028472351620916624139112961511599683136444737309104141027101422220100403019391770	base pairsbase pairsbase pairsbase pairs122078100284765323516209216624139011296150115996083136414473703091004100271014022220010040301939177041

Table S1	Observed base pairs in PDB-REDO at 2.00 Å resolution cut-off and RSCC \geq 0.95.

T-test comparison	Base pair	Hydrogen bond	<i>t</i> -value [*]	Critical <i>t</i> -value [#]
DNA vs. RNA	G-C	O6-N4	3.517	2.626
		N1-N3	2.800	2.626
		N2-O2	3.258	2.626
DNA-RNA vs. DNA	A-T	N1-N3	7.109	2.639
		N6-O4	8.643	2.639
	G-C	O6-N4	2.371	2.626
		N1-N3	6.612	2.626
		N2-O2	5.762	2.626
DNA-RNA vs. RNA	A-U	N1-N3	6.160	2.704
		N6-O4	1.390	2.704
	G-C	O6-N4	4.767	2.626
		N1-N3	5.064	2.626
		N2-O2	4.423	2.626

Table S2t-tests of Watson-Crick (WC) base pairs at 1.60 Å resolution cut-off.

* Bold numbers indicate that compared hydrogen bond distances differ significantly

[#] Defined at confidence level of 99% (p < 0.01).

Base pair type	Base pair	Count	Hydrogen bond	Distance $(Å)^*$	Standard [*]	<i>t</i> -value (critical <i>t</i>) [#]
					deviation (Å)	
DNA-DNA	a-t	13	N1-N3	2.761	0.021	10.426 (3.055)
			N6-O4	2.975	0.031	2.611 (3.055)
	g-c	0	O6-N4			
			N1-N3			
			N2-O2			
RNA-RNA	a-u	20	N1-N3	2.808	0.042	2.129 (2.861)
			N6-O4	2.985	0.069	0.664 (2.861)
	g-c	34	O6-N4	2.860	0.046	6.492 (2.750)
			N1-N3	2.893	0.044	0.950 (2.750)
			N2-O2	2.834	0.058	1.416 (2.750)
DNA-RNA	a-t	21	N1-N3	2.800	0.029	1.529 (2.845)
			N6-O4	2.939	0.058	6.789 (2.845)
	c-g	25	O6-N4	2.889	0.051	4.379 (2.797)
			N1-N3	2.875	0.053	2.274 (2.797)
			N2-O2	2.779	0.098	2.920 (2.797)
	a-u	27	N1-N3	2.799	0.025	0.392 (2.779)
			N6-O4	2.963	0.039	2.250 (2.779)

Table S3Unnatural WC base pairs at 1.60 Å resolution cut-off.

* The used precision is for consistency with the typical precision used in the CCP4 Monomer Library.

[#] Compared to corresponding natural hydrogen bond distance, bold numbers indicate that unnatural base pair differs significantly from the corresponding natural base pair at confidence level of 99% (p < 0.01).

Figure S1 Distributions of the observed hydrogen bond length values, plotted with a 0.02 Å bin width.

Figure S2 Distributions of the observed simple base-pair parameter values, plotted with a 0.02 Å bin width for shear and stretch, and a 1.0° bin width for buckle and propeller twist.

Figure S3 Boxplot of A) R-factor, B) the bond angle rmsZ as reported by *REFMAC*, in testing different restraint models. The direction of better scores is indicated with an arrow on the y-axis. AU stands for arbritrary units.

Figure S4 Comparison of different restraint models Zero, Mine, Stac, Tors, Comb and *LIBG* (all observations): A) R-free, B) Base pair hydrogen bonds, C) Clash Score, D) CONFAL Score, E) Chirality, F) Base pair shearing, G) Base pair stretching, H) Base pair buckling, I) Base pair propeller twisting. The direction of better scores is indicated with an arrow on the y-axis. AU stands for arbitrary units (AU).

Figure S5 Violin plot expressing the change in RSCC by Z_{change} calculated after using nucleic acid restraints in refinement with *PDB-REDO*. AU stands for arbitrary units.

Figure S6 *DNATCO* CANA conformer classification of dinucleotides comparing the original PDB structure models to A) PDB-REDO models obtained using the Stac restraint model, B) PDB-REDO models obtained without using the Stac restraint model.