

STRUCTURAL
BIOLOGY

Volume 76 (2020)
Supporting information for article:

Low-resolution structures of modular nanotransporters shed light on their functional activity

Yuri V. Khramtsov, Anastasiia D. Vlasova, Alexey V. Vlasov, Andrey A.
Rosenkranz, Alexey V. Ulasov, Yuri L. Ryzhykau, Alexander I. Kuklin, Anton S. Orekhov, Ilia B. Eydlin, Georgii P. Georgiev, Valentin I. Gordeliy and Alexander S. Sobolev

MNT- MNT-
α MSH EGF

116.0 kDa

66.2 kDa

45.0 kDa
35.0 kDa

Figure S1 Laemmli SDS-PAGE of MNT- α MSH and MNT-EGF in 12.5% gel. Expected molecular weight of MNT- α MSH and MNT-EGF are 70.4 and 76.4 kDa , respectively.

Hydrodynamic diameter, nm

Figure S2 Particle size distribution for a MNT- α MSH sample ($\mu \mathrm{M}$) in PBS as measured by dynamic light scattering; the mean hydrodynamic diameter of the modular nanotransporter was $8.3 \pm$ 0.6 nm .
(a)

Figure S3 (a) Example of a TEM image of MNT-EGF particles after Gaussian filtering. (b) MNTEGF particles have been marked with an automatic mask.

Figure S4 Two-dimensional classes of images obtained by TEM for MNT- α MSH molecules.

Figure S5 a-SAXS curves $\mathrm{I}(\mathrm{Q})$ obtained from merging frames that correspond the MNT- $\alpha \mathrm{MSH}$ molecules. Black dots show experimental data for MNT- α MSH in PBS (pH 8). Red line shows fit by GNOM (program from ATSAS software package) that was used for 3D low-resolution structure recovering. b - Pair-distribution functions for MNT- α MSH in PBS (pH 8). $c-$ SAXS curves I(Q) obtained from merging frames that correspond the MNT-EGF molecules. Black dots show experimental data for MNT-EGF in PBS (pH 8). Red line shows fit by GNOM (program from ATSAS software package) that was used for 3D low-resolution structure recovering. d - Pairdistribution functions for MNT-EGF in PBS (pH 8).

Figure S6 $a-3 \mathrm{D} a b$-initio low-resolution structures of MNT- α MSH in PBS (pH 8). $b-3 \mathrm{D} a b-$ initio low-resolution structures of MNT-EGF in PBS (pH 8).

Figure S7 Different views of the ensemble of MNT- α MSH models obtained by EOM program. HMP domain is fixed and DTox domain is free in the input data.

Table S1 SAXS experimental details and data evaluation summary.

[^0]| | MNT- α MSH | MNT-EGF |
| :---: | :---: | :---: |
| q-range for fitting | 0.02436-0.1515 | 0.02201-0.2150 |
| Symmetry/anisotropy assumptions | P1 | P1 |
| χ^{2} value | 0.8873 | 1.126 |
| P value | 0.91501 | 0.043664 |
| Constant subtraction in optimization | 0.0001726 | 0.000005346 |
| Model volume (\AA^{3}) | 10846 | 11798 |
| Model resolution (from $\mathrm{q}_{\text {max }}$) | 41 Å | 29 Å |
| (f) Atomistic modelling | | |
| Method | MNT- α MSH | MNT-EGF |
| | Ensemble Optimization Method (EOM) | - |
| q-range for fitting | 0.02436-0.1515 | - |
| Symmetry assumptions | P1 | - |
| Any measures of model precision | | - |
| χ^{2} value | 0.739 | - |
| P value | 0.999578 | - |
| Constant subtraction in optimization | 0.000 | - |
| | $35.00145 .43 \sim 0.14$ (1/7) | |
| R_{g} values $(\AA), d_{\text {max }}$ values (\AA), and weights for multi-state model | $42.17132 .83 \sim 0.29(2 / 7)$ | - |
| | $33.73103 .74 \sim 0.29(2 / 7)$ | |
| | $33.89119 .74 \sim 0.29(2 / 7)$ | |
| Final ensemble $R_{\mathrm{g}}(\AA)$ and $d_{\text {max }}(\AA)$ | 36.37, 122.58 | - |
| (g) Data and model deposition IDs | | |
| | MNT- α MSH | MNT-EGF |
| | SASDJY7 | SASDJZ7 |

[^0]: (e) Shape modelling results (Gasbor)

