STRUCTURAL
BIOLOGY

Volume 75 (2019)

Supporting information for article:

Molecular replacement using structure predictions from databases
Adam J. Simpkin, Jens M. H. Thomas, Felix Simkovic, Ronan M. Keegan and Daniel J. Rigden

Figure S1 Sequence alignment between 5XJ5 and the model for Pfam code: PF02660. The alignment is coloured using the Clustal x colour scheme (Thompson et al., 2002), and the predicted secondary structure predicted using DSSP (Kabsch \& Sander, 1983) is shown below. Figure made using Jalview (Waterhouse et al., 2009) as were Supp Figs 2 and 3.

Figure S2 Sequence alignment between 1YZQ and the model for Pfam code: PF00071. The alignment is coloured using the Clustal x colour scheme, and the predicted secondary structure predicted using DSSP is shown below.

Figure S3 Sequence alignment between 5FFA and the model for Pfam code: PF03713. The alignment is coloured using the Clustal x colour scheme, and the predicted secondary structure predicted using DSSP is shown below. The X's in this alignment represent an unmodelled gap in 5FFA.

Figure S4 A comparison between the Ca RMSD (\AA) calculated using TM-align (Zhang \& Skolnick, 2005) and truncation level (\%) for the four clusters ($1,2,3 \& 4$) that contained successful search models for 5uw2. Successful models are denoted by green circles and unsuccessful models by red crosses.

Figure S5 A comparison between the Ca RMSD (Å) calculated using TM-align and truncation level (\%) for the two clusters $(1 \& 2)$ that contained successful search models for 5 caj. Successful models are denoted by green circles and unsuccessful models by red crosses.

Figure S6 A comparison between the Ca RMSD (\AA) calculated using TM-align and truncation level (\%) for the two clusters $(2 \& 3)$ that contained successful search models for 5 cuo. Successful models are denoted by green circles and unsuccessful models by red crosses.

Figure S7 A comparison between the Ca RMSD (\AA) calculated using TMalign and truncation level (\%) for the two clusters $(1 \& 4)$ that contained successful search models for 5 azb. Successful models are denoted by green circles and unsuccessful models by red crosses.

Table S1 Full table of target and model properties, and AMPLE results for the GREMLIN and PconsFam models. Rows in italics are targets not attempted due to poor resolution ($>3.0 \mathrm{~A}$) and/or poor model quality (TM-score <0.5) [see Excel file]

Table S2 Results of MR attempts with PconsFam models processed with CONCOORD

Target and model properties								AMPLE solutions										
pdb code	Pfam	Resolut ion (\AA)	Number of chains	rmsd (\AA) on calpha (nres)	length target chain/m odel	$\left\lvert\, \begin{gathered} \text { CLUST } \\ \text { AL } \\ \text { Omega } \\ \text { seqence } \\ \text { identity } \end{gathered}\right.$	solves with AMPL E's ideal helix mode	solves using AMPL E single structur e mode and VoroM QA values to edit the structur e?	Map CC vs deposit	Total number of success ful search models (total number of search models made)	Phaser TFZ	shelxe CC	shelxe ACL	R-free after buccane er	Map CC vs deposit	Total number of success ful search models (total number of search models made)	Solves with clusters (total number of clusters)	Solves with truncati ons in the range
5XJ5	$\begin{gathered} \text { PF0266 } \\ 0 \end{gathered}$	1.5	1	$\begin{gathered} 2.2 \\ (162) \end{gathered}$	198/175	39	no	no	none	N/a								
5AZB	$\begin{gathered} \text { PF0179 } \\ 0 \end{gathered}$	1.6	1	$\begin{gathered} 2.8 \\ (193) \end{gathered}$	284/245	100	yes	no	none	N/a								
1YZQ	$\begin{gathered} \text { PF0007 } \\ 1 \end{gathered}$	1.8	1	$\begin{gathered} 1.8 \\ (155) \end{gathered}$	164/159	39	no	no	$\begin{array}{\|c} \hline \text { c8_t60_ } \\ \text { r3_poly } \\ \text { ala } \end{array}$	42	8.3	42	53	0.33	$\begin{gathered} 0.292 \\ 0.209 \end{gathered}$	7 (400)	$\begin{gathered} 5,6,8, \\ 9(10) \end{gathered}$	50-75\%
5FFA	$\begin{gathered} \text { PF0371 } \\ 3 \end{gathered}$	1.5	1	$\begin{gathered} 2.1 \\ (125) \end{gathered}$	135/144	27	no	no	none	N/a								

Table S3 Stereochemical quality of the PconsFam models and Rosetta derivatives

Pfam family	PDB code of crystal structure	Model source	TM-score of model vs crystal structure. Range (mean)	\% Ramachandran core. Range (mean)	\% Ramachandran outliers. Range (mean)	PROCHECK G-factor on dihedrals. Range (mean)
PF01790	5azb	PconsFam	0.61	74.4	6	-0.24
		Rosetta remodelling	0.25-0.60 (0.54)	75.9-87.9 (81.6)	1.0-5.0 (2.7)	-0.06-0.19 (0.05)
PF02660	5xj5	PconsFam	0.72	88.7	3.5	-0.03
		Rosetta remodelling	0.23-0.71 (0.51)	86.7-96 (91.4)	0-2.7 (0.7)	0.10-0.35 (0.23)
PF00071	1 yzq	PconsFam	0.85	77.6	7.5	-0.14
		Rosetta remodelling	0.72-0.86 (0.81)	73.7-92.3 (80.9)	0-5.8 (2.7)	-0.01-1.14 (0.11)
PF03713	5ffa	PconsFam	0.76	95.2	1.6	0.33
		Rosetta remodelling	0.75-0.88 (0.82)	92.8-100 (96.33)	0.9-2.2 (0.1)	0.36-0.54 (0.44)

Table S4 Rotation scores derived from SIMBAD for the GREMLIN models processed by AMPLE [see Excel file]

Kabsch, W. \& Sander, C. (1983). Biopolymers. 22, 2577-2637.
Thompson, J. D., Gibson, T. J. \& Higgins, D. G. (2002). Curr. Protoc. Bioinformatics. Chapter 2, Unit 2.3. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. \& Barton, G. J. (2009). Bioinformatics. 25, 11891191.

Zhang, Y. \& Skolnick, J. (2005). Nucleic Acids Res. 33, 2302-2309.

