

Volume 75 (2019)

Supporting information for article:

Crystal structure determination of *Pseudomonas stutzeri* A1501 endoglucanase Cel5A: the search for a molecular basis for glycosynthesis in GH5_5 enzymes

Raphaël Dutoit, Maud Delsaute, Laetitia Collet, Corinne Vander Wauven, Dany Van Elder, Renaud Berlemont, Aurore Richel, Moreno Galleni and Cédric Bauvois

Endoglucanase	PDB ID (chain)	Dali Z-score	GH5 subfamily	Reference
RBcel1	4EE9 (A)	47.2	5	(Delsaute <i>et al.</i> , 2013)
Xac0030	5HHN (C)	42.5	5	Unpublished
Xac0029	5HOS (A)	41.8	5	Unpublished
Ta_Cel5A	1GZJ (A)	39.9	5	(Lo Leggio & Larsen,
				2002)
An_Cel5A	5I78 (B)	39.9	5	(Yan <i>et al.</i> , 2016)
Tv_Cel5A	5I6S (A)	39.6	5	Unpublished
Hj_Cel5A	3QR3 (A)	34.7	5	(Lee et al., 2011)
Gl_Cel5A	5D8W (A)	34.6	5	(Liu et al., 2016)
Fn_Cel5A	3NCO (A)	28.6	25	Unpublished
Tm_Cel5A	3AMD (B)	28.4	25	(Wu et al., 2011)

Table S1Structure homologues identified using the Dali server

Abbreviations: Xanthomonas axonopodis (Xac), Thermoascus aurantiacus (Ta), Aspergillus niger (An), Talaromyces verruculosum (Tv), Hypocrea jecorina (Hj), Ganoderma lucidum (Gl), Fervidobacterium nodosum (Fn), Thermotoga maritima (Tm).

Amino acids	Characteristic and functional role	References
Arg-56	Structurally and functionally important residue, providing an ideal geometric and electrostatic environment for the nucleophile glutamate.	(Domínguez <i>et al.</i> , 1996; Sakon <i>et al.</i> , 1996; Cutfield <i>et al.</i> , 1999; Lo Leggio & Larsen, 2002)
Asn-143	Probably involved in the stabilization of transition state through the formation of a critical hydrogen bond with the sugar 2-hydroxy group at the -1 subsite.	(Davies et al., 1997)
Glu-144	Catalytic proton donor	(Ducros <i>et al.</i> , 1995; Sakon <i>et al.</i> , 1996; Larsson <i>et al.</i> , 2006; Lee <i>et al.</i> , 2011; Yan <i>et al.</i> , 2016)
His-206	Forms an unusually short hydrogen bond (2.51 Å in Ps_Cel5A) with the proton donor glutamate, contributing to its positioning and ionization.	(Ducros <i>et al.</i> , 1995; Sakon <i>et al.</i> , 1996; Sabini <i>et al.</i> , 2000; Larsson <i>et al.</i> , 2006; Delsaute <i>et al.</i> , 2013)
Tyr-208	Function remains to be elucidated. Some authors proposed that it stabilizes the oxocarbenium-like ion of the transition state. Other studies suggested that it orients and/or influences the charged state of the nucleophile.	(Ducros <i>et al.</i> , 1995; Gebler <i>et al.</i> , 1995)
Glu-252	Catalytic nucleophile	(Ducros <i>et al.</i> , 1995; Domínguez <i>et al.</i> , 1996; Sakon <i>et al.</i> , 1996; Lo Leggio & Larsen, 2002; Liu <i>et</i> <i>al.</i> , 2016)
Trp-283	Involved in a non-proline cis peptide bond (conserved in GH5 and many other $(\beta/\alpha)_8$ -barrel GH). It participates in stacking interactions with the nucleophilic glutamate and interacts with the sugar.	(Sakon <i>et al.</i> , 1996; Domínguez <i>et al.</i> , 1996)

Table S2Amino acid residues forming the active centre of Ps_Cel5A endoglucanase

Figure S1 Michaëlis-Menten plots deduced from the initial rates measured with increasing CMC initial concentrations. CMC hydrolysis in presence of Ps_Cel5A was determined by measuring the release of reducing sugars using dinitrosalicylic acid assay (DNS). Error bars represent standard deviations from two independent measurements.

Figure S2 HPAEC-PAD elution profiles of products generated from cellotriose (G3) by Ps_Cel5A after 24 hours incubation at 37°C.

Figure S3 Position of cellobiose in the +1 and +2 subsites of Ps_Cel5A (PDB ID 6R2F, gold), RBcel1 (PDB ID 4M24, blue), Tv_Cel5A (PDB ID 5L9C, magenta), Gl_Cel5A (PDB ID 5D8Z, green), and Xac0030 (PDB ID 4W7V, cyan).

Figure S4 The -4 subsite adaption in Hj_Cel5A and Gl_Cel5A structures. The binding residue of the -4 subsite is Phe-37, Tyr-28, and Trp-48 for Ps_Cel5A (PDB ID 4LX4, light grey), Hj_Cel5A (PDB ID 3QR3, blue (Lee *et al.*, 2011)), and Gl_Cel5A (PDB ID 5D8W, green (Liu *et al.*, 2016)), respectively.

Figure S5 The adaptation of the +1 and +2 subsites in Ps_Cel5A and GH5_7 mannases. Ps_Cel5A structure (PDB ID 6R2F, light grey) was superimposed on *Rhizomucor miehei* Man5A (PDB ID 4QP0, magenta (Zhou *et al.*, 2014)) and *Trichoderma reesei* Man5A (PDB ID 1QNR, green, (Sabini *et al.*, 2000)).