

Volume 75 (2019)

Supporting information for article:

Solution structures of long-acting insulin analogues and their complexes with albumin

Line A. Ryberg, Pernille Sønderby, Fabian Barrientos, Jens T. Bukrinski, Günther H. J. Peters and Pernille Harris

S1. Ab-initio modelling results

S1.1. Detemir tri-hexamer

20 *ab-initio* models were generated by *DAMMIF* based on the P(r) function with a maximum intramolecular dimension (D_{max}) of 11.3 nm. The curve has an ambiguity score of 1.56 which indicate that the *ab-initio* model might be ambiguous(Petoukhov & Svergun, 2015). The ensemble of models had a resolution of 42±3 Å and a normalized spatial discrepancy (NSD) of 0.67±0.02 indicating a stable solution. A cluster analysis was performed by DAMCLUST, resulting in three clusters. The most typical model of one of the clusters ($\gamma^2 = 0.80$) is presented in Fig. 2c in a light blue surface representation. The model has a bent *v*-shape and seems to consist of three distinct spheres that could correspond to three hexamers.

S1.2. Degludec albumin-di-hexamer complex

20 *ab-initio* models were generated by *DAMMIF* based on the SEC-SAXS_{albumin-degludec} P(r) function with a maximum intramolecular dimension (D_{max}) of 13.4 nm. The ambiguity score of the scattering curve was calculated by AMBIMETER to 1.40 indicating that a shape reconstruction is potentially unique. The ensemble of models had a resolution of 41±3 Å and an NSD of 0.71±0.04 indicating a stable solution. The most typical model of the ensemble ($\chi^2 = 1.67$) is presented in Fig. 7c (light blue surface representation).

S1.3. Detemir albumin-hexamer complex

20 DAMMIF models were generated based on the albumin-detemir 8.5 mg/mL P(r) function with a D_{max} of 13.0 nm and thereafter aligned and averaged by DAMAVER to an average model. The scattering curve has an ambiguity score of 1.230 indicating that unambiguous shape reconstruction should be possible. The ensemble of models had a resolution of 39±3 Å and an NSD of 0.68±0.02 indicating a stable solution, which is expected from the low ambiguity score. The most typical model of the ensemble ($\chi^2 = 0.86$) is presented in Figs. 9*c* and 9*d* from different orientations (light blue).

S1.4. Detemir albumin-di-hexamer-albumin complex

Ab-initio modelling was carried out applying P1 and P2 symmetry based on the albumin-detemir 15.6 mg/mL P(r) function with D_{max} of 19.5 nm. DAMMIF was run 20 times to generate models with P1 symmetry, and DAMMIN was run 20 times to generate models with P2 symmetry. The scattering curve has an ambiguity score of 2.076 indicating that shape reconstruction might be ambiguous.

The ensemble of models with P1 symmetry had a resolution of 53 ± 4 Å and with NSD of 1.0 ± 0.1 . The ensemble of models with P2 symmetry had a resolution was 55±4 Å and an NSD 0.76±0.08. The most typical models of the ensembles with respectively P1 ($\chi^2 = 0.83$) and P2 symmetry ($\chi^2 = 0.89$) are

presented in Figs. 10*c* and 10*d*. Although a stable solution was not obtained for the models with P1 symmetry (NSD > 0.7(Volkov & Svergun, 2003)), there is a good agreement between the two representative models that are both elongated.

Table S1Sample overview

Overview over samples listing their constituents, buffer, total protein concentration, molar ratio, and the beamline used for data collection.

Insulin	Buffer	Protein conc. (mg/mL)	albumin:insulin	Data collection
Detemir	Buf _{det}	0.5-9.9	-	I911-SAXS (MAXII, MAXIVLab)
Degludec	$\operatorname{Buf}_{\operatorname{deg}}$	0.5-7.7	-	P12 (PETRAIII, DESY)
Detemir	$Buf_{alb-det}$	1.9-20.8	1:6	I911-SAXS (MAXII, MAXIVLab)
Degludec	$\operatorname{Buf}_{\operatorname{deg}}$	10.6 (SEC-SAXS)	1:6	P12 (PETRAIII, DESY)
Degludec	$\operatorname{Buf}_{\operatorname{deg}}$	1.5-15.3	1:6	P12 (PETRAIII, DESY)
Degludec	Buf_{deg}	2.1-10.8	1:12	P12 (PETRAIII, DESY)

Table S2Degludec samples – molecular parameters

Molecular parameters for degludec samples derived from SAXS analysis. The subscripts indicate whether the parameter is derived from Guinier analysis (G) or the P(r) function (P). #_{monomers} denotes the average number of monomers calculated from MM^{P} .

С	$(I(\theta)/C)^{\rm G}$	$(I(0)/C)^{\mathrm{P}}$	R_g^{G}	R_g^{P}	D_{max}	V	MM^{G}	MM ^P	MM^{V}	$\#_{monomers}$
mg/mL	mL/mg	mL/mg	nm	nm	nm	nm ³	kDa	kDa	kDa	
0.5	0.055	0.057	2.61	2.65	8.14	108.03	75.8	78.4	72.0	13.3
1.2	0.054	0.052	2.60	2.63	7.93	108.43	75.2	71.6	72.3	12.1
1.6	0.053	0.055	2.55	2.60	7.51	111.59	73.8	76.4	74.4	12.9
2.7	0.051	0.055	2.51	2.56	7.42	109.52	70.6	75.6	73.0	12.8
3.9	0.051	0.051	2.43	2.56	7.42	109.53	71.0	71.0	73.0	12.0
5.7	0.049	0.052	2.34	2.57	7.49	102.72	67.6	72.4	68.5	12.3
7.7	0.048	0.051	2.29	2.56	7.56	99.90	65.2	70.6	66.6	12.0

Table S3 Detemir samples – molecular parameters

Molecular parameters for detemir samples derived from SAXS analysis. The subscripts indicate whether the parameter is derived from Guinier analysis (G) or the P(r) function (P). #_{monomers} denotes the average number of monomers calculated from MM^{P} .

С	$(I(0)/C)^{\rm G}$	$(I(0)/C)^{\mathrm{P}}$	R_g^{G}	R_g^{P}	D_{max}	V	MM ^G	MM ^P	MM^{V}	#monomers
mg/mL	mL/mg	mL/mg	nm	nm	nm	nm ³	kDa	kDa	kDa	
0.5	0.069	0.076	3.31	3.34	11.50	124.16	95.1	105.7	82.8	17.9
1.0	0.069	0.070	3.29	3.35	11.35	133.81	96.1	97.5	89.2	16.5
2.5	0.072	0.072	3.26	3.32	11.16	137.24	100.3	100.3	91.5	17.0
5.0	0.074	0.076	3.07	3.34	10.45	151.90	103.0	105.8	101.3	17.9
9.9	0.086	0.092	3.29	3.53	11.15	183.64	119.8	128.1	122.4	21.7

Table S4 Albumin-degludec (1:12) samples – molecular parameters

Molecular parameters for albumin-degludec samples in a 1:12 ratio derived from SAXS analysis. The subscripts indicate whether the parameter is derived from Guinier analysis (G) or the P(r) function (P). $\#_{Alb-hex}$ and $\#_{Alb-di-hex}$ denote the average numbers of respectively albumin-hexamer and albumin-di-hexamer complex calculated from MM^{P} .

С	$(I(0)/C)^{\rm G}$	$(I(0)/C)^{\mathrm{P}}$	R_g^{G}	R_g^{P}	D_{max}	V	MM ^G	MM ^P	MM ^V	# _{Alb-hex}	# _{Alb-di-hex}
mg/mL	mL/mg	mL/mg	nm	nm	nm	nm ³	kDa	kDa	kDa		
2.1	0.010	0.010	3.77	3.84	13.61	181.10	138.5	138.5	120.7	1.3	1.0
4.4	0.010	0.010	3.77	3.86	13.56	189.10	137.9	137.9	126.1	1.3	1.0
6.5	0.010	0.010	3.73	3.81	13.12	189.28	140.6	140.6	126.2	1.4	1.0
10.8	0.010	0.010	3.6	3.73	12.22	185.11	137.0	138.2	123.4	1.3	1.0

Table S5 Albumin-degludec (1:6) samples – molecular parameters

Molecular parameters for albumin-degludec samples in a 1:6 ratio derived from SAXS analysis. The subscripts indicate whether the parameter is derived from Guinier analysis (G) or the P(r) function (P). $\#_{Alb-hex}$ and $\#_{Alb-di-hex}$ denote the average numbers of respectively albumin-hexamer and albumin-di-hexamer complex calculated from MM^{P} .

С	$(I(0)/C)^{\rm G}$	$(I(0)/C)^{\mathrm{P}}$	R_g^{G}	R_g^{P}	D_{max}	V	MM ^G	MM ^P	MM ^V	# _{Alb-hex}	# _{Alb-di-hex}
mg/mL	mL/mg	mL/mg	nm	nm	nm	nm ³	kDa	kDa	kDa		
1.5	0.010	0.010	3.99	4.11	14.81	208.91	144.8	144.8	139.3	1.4	1.0
3.1	0.011	0.011	4.04	4.14	14.44	222.00	153.4	157.9	148.0	1.5	1.1
4.7	0.011	0.011	4.04	4.16	14.7	226.58	156.5	156.5	151.1	1.5	1.1
7.6	0.012	0.012	3.93	4.09	13.56	225.21	159.4	163.0	150.1	1.6	1.2
10.2	0.011	0.011	3.85	4.04	13.37	221.94	153.6	153.6	148.0	1.5	1.1
15.13	0.011	0.011	3.53	3.93	12.67	214.82	146.5	152.0	143.2	1.5	1.1

Table S6 Albumin-degludec (1:6) SEC-SAXS sample – molecular parameters

Molecular parameters for albumin-degludec SEC-SAXS sample in a 1:6 ratio derived from SAXS analysis. The subscripts indicate whether the parameter is derived from Guinier analysis (G) or the P(r) function (P). $\#_{Alb-hex}$ and $\#_{Alb-di-hex}$ denote the average numbers of respectively albumin-hexamer and albumin-di-hexamer complex calculated from MM^{P} .

Elution	С	$(I(0)/C)^{\rm G}$	$(I(0)/C)^{\mathrm{P}}$	R_g^{G}	R_g^{P}	D _{max}	V	MM ^G	MM ^P	MM ^V	# _{Alb-hex}	# _{Alb-di-hex}
Frame	mg/mL	mL/mg	mL/mg	nm	nm	nm	nm ³	kDa	kDa	kDa		
1124	1.8	0.056	0.060	2.97	3.06	9.34	117.71	77.6	83.1	78.5	0.8	0.6
994	6.5	0.102	0.102	3.75	3.77	13.40	179.46	141.3	141.3	119.6	1.3	1.0

Table S7 Albumin-detemir (1:6) samples – molecular parameters

Molecular parameters for albumin-detemir samples in a 1:6 ratio derived from SAXS analysis. The subscripts indicate whether the parameter is derived from Guinier analysis (G) or the P(r) function (P). $\#_{Alb-hex}$ and $\#_{Alb-di-hex-alb}$ denote the average numbers of respectively albumin-hexamer and albumin-di-hexamer-albumin complex calculated from MM^{P} .

											# _{Alb-di-hex-}
С	$(I(0)/C)^{\rm G}$	$(I(0)/C)^{\mathrm{P}}$	R_g^{G}	R_g^{P}	D_{max}	V	MM^{G}	MM ^P	MM^{V}	# _{Alb-hex}	alb
mg/mL	mL/mg	mL/mg	nm	nm	nm	nm ³	kDa	kDa	kDa		
1.9	0.057	0.057	3.14	3.20	10.82	125.03	78.3	78.3	83.4	0.8	0.4
4.1	0.054	0.054	3.08	3.15	10.71	126.58	74.6	74.6	84.4	0.7	0.4
8.5	0.074	0.075	3.54	3.64	13.03	162.34	102.1	103.7	108.2	1.0	0.5
15.6	0.150	0.152	5.41	5.69	19.5	309.45	208.3	211.0	206.3	2.1	1.0
20.8	0.275	0.399	7.79	8.31	27.25	650.76	380.9	552.4	433.8	5.4	2.7

Table S8SAS experimental details

(a) Sample detail	ls					
	Detemir	1:6	1:6	2:12	2:12 complex,	1:12 complex
	tri-	complex,	complex,	complex,	P2	
	hexamer	FA4	FA7	P1		
Organism	Homo	Homo	Homo	Homo	Homo	Homo sapiens
	sapiens	sapiens	sapiens	sapiens	sapiens	
Source	Levemir [®] ,	Recombumin	n [®] Alpha, Alt	oumedix Ltd.,		Recombumin®
	Novo	Levemir [®] , N	ovo Nordisk	A/S.		Elite, Albumedix
	Nordisk					Ltd., Tresiba®,
	A/S					Novo Nordisk
						A/S.
Uniprot	Insulin	Insulin deten	nir: P01308 (25-53, 90-110), lipidated with	Insulin degludec:
sequence ID	detemir:	myristic acid	l at Lys ^{B29} and	d human serur	n albumin:	P01308 (25-53,
(residues in	P01308	P02768 (25-	609)			90-110), lipidated
construct),	(25-53,					with
modifications	90-110),					hexadecanedioic
	lipidated					acid at Lys ^{B29}
	with					through γ-
	myristic					glutamate linker
	acid at					and human serum
	Lys ^{B29}					albumin: P02768
						(25-609)
Extinction			Al	bumin: 34445	1	
coefficient						
$(A_{280}, M^{-1}cm^{-1})$						
Partial specific				0.7425		
volume \overline{v}						
$(cm^3 g^{-1})$						
Particle				2.09		
contrast $\Delta \bar{\rho}$						
$(10^{10} \text{ cm}^{-2})$						
Molecular	Detemir:		Detemir: 5.	9, albumin: 66	5.5	Degludec: 6.1,
mass M from	5.9					albumin: 66.5
chemical						

This table has been prepared according to guidelines published by Trewhella *et al.* (2017), Acta Cryst. D73, 710-728, https://doi.org/10.1107/S2059798317011597.

¹ Not used for detemir or degludec as they are in phenol-containing buffers

composition (kDa)						
Expected molecular mass of complex M_E (kDa)	106.2	101.9	101.9	203.8	203.8	139.7
For SEC-SAS, loading concentration, (mg ml ⁻¹), injection volume (µl), flow rate (ml min ⁻¹)						10.6, 100, 0.70
Concentration (mg ml ⁻¹) measured and method	2.5, SAXS scaling	8.5, SAXS scaling	8.5, SAXS scaling	15.6, SAXS scaling	15.6, SAXS scaling	6.5, SAXS scaling
Solvent composition	5.0 mM Na ₂ HPO ₄ , 13.1 mM <i>m</i> -cresol, 15.1 mM phenol, 173.7 mM glycerol, 20.0 mM NaCl	6.9 mM Na ₂ mM <i>m</i> -creso phenol, 157. glycerol, 38.	HPO4, 11.9 d, 13.7 mM 3 mM 5 mM NaCl	8.8 mM Na; mM <i>m</i> -cress phenol, 140 56.9 mM Na	eHPO ₄ , 10.6 ol, 12.2 mM .9 mM glycerol, aCl	25 mM Na ₂ HPO ₄ , 15.9 mM <i>m</i> - cresol, 15.9 mM phenol, 212.8 mM glycerol, 20 mM NaCl
(<i>b</i>) SAS data collection param	eters					

Source,	I911-SAXS beamline(Labrador <i>et al.</i> , 2013), MAXII, MAX IV	P12 BioSAXS
instrument and	Laboratory	beamline(Blanchet
description or		et al., 2015),
reference		PETRAIII
Wavelength	0. 9100	1.241
(Å)		
Beam size	300×200	200 imes 120
(µm)		

Sample-to-	1962	3000
detector		
distance) (mm)		
q-measurement	0.0829-5.406	0.0248-5.036
range (nm ⁻¹)		
Absolute	Comparison with scattering from pure H ₂ O	
scaling method		
Basis for	To transmitted intensity by beam-stop counter	
normalization		
to constant		
counts		
Method for	Frame-by-frame comparison	
monitoring		
radiation		
damage		
Exposure time	4×30	Continuous 1 s
		data-frame
		measurements of
		SEC elution
Sample	Flow cell, effective sample path length 1.5 mm.	SEC-SAXS with
configuration		flow cell, effective
including path		sample path length
length and		1.7 mm
flow rate		
where relevant		
Sample	20	20
temperature		
(°C)		
(c) Software emple	byed for SAS data	
reduction, analysis	and interpretation	
SAS data	The PyFAI(Kieffer & Wright, 2013) package, PRIMUSqt(Konarev et al. 2013) package, PRIMUSqt(Konar	<i>t al.</i> , 2003) and
reduction to	CHROMIXS(Franke et al., 2017) from ATSAS 2.8.3(Franke et al., 20	17)
sample-solvent		
scattering, and		
extrapolation,		
merging,		
desmearing.		
Calculation of ε	ProtParam(Gasteiger et al., 2005) tool from ExPaSy(Gasteiger et al.	, 2003)
from sequence		

Basic analyses:	PRIMUSqt(Konarev et
Guinier, $P(r)$, V_P	al., 2003) from ATSAS
	2.8.3(Franke <i>et al.</i> ,
	2017)
Shape/bead	DAMMIF(Franke & Svergun, 2009), DAMMIN(Svergun, 1999), DAMAVER(Volkov &
modelling	Svergun, 2003) and DAMCLUST(Petoukhov et al., 2012) from ATSAS 2.8.3(Franke et
	al., 2017)
Atomic structure	SASREFCV(Petoukhov & Svergun, 2006, 2005) and CRYSOL(Svergun et al., 1995) from
modelling	ATSAS 2.8.3(Franke et al., 2017)
Molecular	<i>PyMOL</i> (version 1.8.2.3, Schrödinger, LLC)
graphics	

(d) Structural						
parameters						
	Detemir	1:6	1:6	2:12	2:12 complex,	1:12 complex
	tri-	complex,	complex,	complex,	P2	
	hexamer	FA4	FA7	P1		
Guinier						
Analysis						
$I(0) (\text{cm}^{-1})$	0.18	0.63	0.63	2.35	2.35	0.66
$R_{\rm g}({ m \AA})$	32.6	35.4	35.4	54.1	54.1	38
<i>q</i> -range (Å⁻	0.013-	0.012-	0.012-	0.016-	0.016-0.024	0.008-0.034
1)	0.038	0.037	0.037	0.024		
Quality	94 %	96 %	96 %	80 %	80 %	98 %
<i>M</i> from <i>I</i> (0)	100.3	102.1	102.1	208.3	208.3 (1.02)	138.5 (0.99)
(ratio to	(0.94)	(1.00)	(1.00)	(1.02)		
expected						
value)						
P(r) analysis						
$I(0) (cm^{-1})$	0.18	0.64	0.64	2.38	2.38	0.66
$R_{\rm g}({ m \AA})$	33.2	36.4	36.4	56.9	56.9	37.7
D_{\max} (Å)	111.6	130.3	130.3	195.0	195.0	134.0
q-range (Å⁻	0.013-	0.012-	0.012-	0.016-	0.016-0.147	0.008-0.213
¹)	0.245	0.226	0.226	0.147		
Total	0.70	0.67	0.67	0.53	0.53	0.81
quality						
estimate						
<i>M</i> from <i>I</i> (0)	100.3	103.7	103.7	211.0	211.0 (1.04)	138.5 (0.99)
(ratio to	(0.94)	(1.02)	(1.02)	(1.04)		
expected						
value)						

Porod volume, V _P	137.20	162.34	162.34	309.45	309.45	179.50	
(nm ³)							
Ratio	1.37	1.57	1.57	1.46	1.46	1.30	
V _P /calculated							
M							
(e) Shape model	ling						
results							
	Detemir	1:6	1:6	2:12	2:12 complex,	1:12 complex	
	tri-	complex,	complex,	complex,	P2		
	hexamer	FA4	FA7	P1			
DAMMIF (Run i	in interactive	mode with dun	nmy atom rad	ius 2.7 Å, oth	erwise default par	rameters, 20	
calculations)							
<i>q</i> -range for	0.013-	0.012-	0.012-	0.016-		0.008-0.213	
fitting (Å ⁻¹)	0.245	0.225	0.225	0.147			
Shape	compact	compact	compact	compact			
Symmetry,	P1, none	P1, none	P1, none	P1, none		P1, none	
anisotropy							
assumptions							
NSD (standard	0.67	0.68	0.68	0.95		0.71 (0.04), 4	
deviation), No.	(0.02), 3	(0.02), 7	(0.02), 7	(0.11), 4			
of clusters							
χ^2 range	0.785-	0.794-	0.794-	0.802-		1.619-1.701	
	0.862	0.924	0.924	0.874		2.22 10.5	
Constant	-	1.19×10^{-4}	1.19 × 10 ⁻	-		3.33×10^{-3}	
adjustment to			4				
intensities				100		107	
<i>M</i> estimate	78.5	95.7	95.7	199		105	
(KDa)	42 (2)	20 (2)	20(2)	52 (A)		41 (2)	
(from SASPES)	42 (3)	39 (3)	39(3)	55 (4)		41 (3)	
(110111 SASKES)							
(A) DAMMIN (Run in expert mode with default parameters, 20 calculations)							
a-range for 0.016.0.147							
fitting					5.010 0.177		
Initial search					ellipsoid		
volume					r		
volume							

Symmetry,	P2, prolate
anisotropy	anisometry
assumptions	(perpendicular
	symmetry and
	anisometry
	axes)
NSD (standard	0.76 (0.08), 4
deviation), No.	
of clusters	
χ^2 range	0.864-0.915
Constant	1.59×10^{-4}
adjustment to	
intensities	
Resolution	55 (4)
(from SASRES)	
(Å)	

(f) Atomistic							
modelling							
	Detemir	1:6	1:6	2:12	2:12 complex,	1:12 complex	
	tri-	complex,	complex,	complex,	P2		
	hexamer	FA4	FA7	P1			
SASREF (default parameters, 10 calculations, data shown for best model)							
q-range for	0.008-	0.008-	0.008-	0.008-	0.008-0.432	0.005-0.403	
fitting (Å ⁻¹)	0.415	0.432	0.432	0.432			
Symmetry	P1	P1	P1	P1	P2	P1	
χ^2 value	0.91	1.68	0.93	0.92	0.95	2.62	
Constant	8.87×10^{-10}	3.77×10^{-5}	4.31×10^{-10}	6.11 × 10 ⁻	6.62×10^{-5}	8.77×10^{-5}	
adjustment to	5		5	5			
intensities							
CRYSOL							
q-range for	0.008-	0.008-	0.008-	0.008-	0.008-0.400	0.005-0.400	
fitting	0.400	0.400	0.400	0.400			
No constant							
subtraction							
χ^2 value	1.16	1.88	1.32	1.07	1.21	2.57	
Predicted R_g	33.20	34.83	35.35	56.30	56.99	37.61	
(Å)							

Vol (Å), Ra	127959,	131398,	131398,	265264,	265264, 1.80,	175546, 1.80,
(Å), Dro (e Å-	1.40,	1.40, 0.020	1.48,	1.80,	0.025	0.018
³)	0.030		0.020	0.025		
<u>Constant</u>						
subtraction						
allowed						
χ^2 value	1.54, 0.00	1.88	1.30	1.01	1.12	1.74,
Predicted R_g	33.11	34.83	35.35	56.38	57.05	37.68
(Å)						
Vol (Å), Ra	136194,	131398,	130781,	260328,	231562, 1.40,	163125, 1.40,
(Å), Dro (e Å-	1.76,	1.40, 0.020	1.40,	1.50,	0.025	0.022
³)	0.022		0.020	0.028		
(g) SASBDB						
IDs for data						
and models						
	Detemir	1:6	1:6	2:12	2:12 complex,	1:12 complex
	tri-	complex,	complex,	complex,	P2	
	hexamer	FA4	FA7	P1		
	SASDEV5	SASDEW5	SASDEX5	SASDEY5	SASDEZ5	SASDE26

Figure S1 Structure of degludec R_3T_3 - T_3R_3 di-hexamer with an inter-hexamer distance of 35.4 Å. (*a*) Fit of the structure (purple) to experimental degludec data extrapolated to infinite dilution (grey). The lower inset (*b*) shows error-weighted residual plots for the models. (*c*) The di-hexamer structure (purple) is superimposed onto the low resolution *ab-initio* model (grey).

Figure S2 Scattering curves normalized for concentration of albumin-detemir mixed in a 1:6 ratio. The total protein concentration range is between 1.9-20.8 mg/mL with darker shades corresponding to higher concentrations. An increase in I(q)/C is observed corresponding to a concentration-dependent equilibrium.