

Volume 74 (2018)

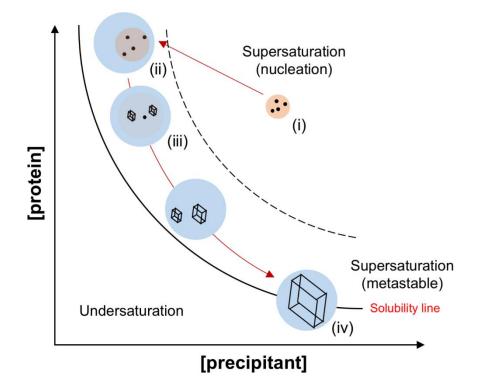
Supporting information for article:

Membrane protein crystals for neutron diffraction

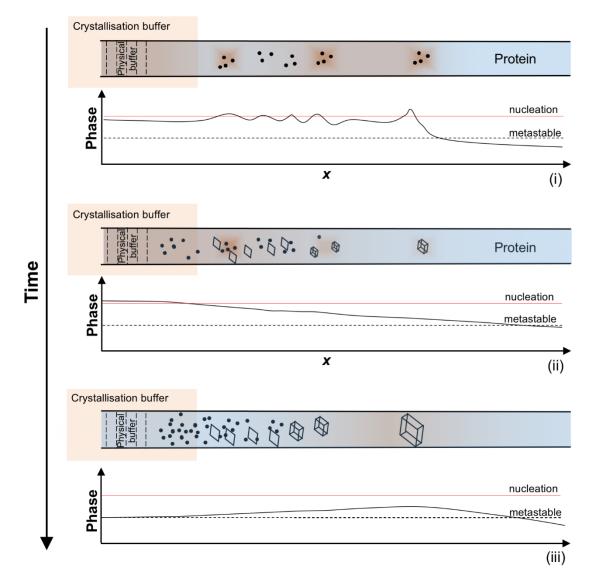
Thomas Lykke-Møller Sørensen, Samuel John Hjorth-Jensen, Esko Oksanen, Jacob Lauwring Andersen, Claus Olesen, Jesper Vuust Moller and Poul Nissen

PDB	Protein	Resolution (Å)	Space group	a, b, c (Å)	α, β, γ (°)	Reference
4BVM	Human myelin peripheral membrane protein P2	0.93	P 4 ₁ 2 ₁ 2	58.07, 58.07, 101.50	90.00, 90.00, 90.00	(Laulumaa <i>et al.</i> , 2015)
5JAE	$LeuT_{Aa}$ leucine transporter	1.65	P 2 ₁	81.57, 92.08, 92.47	90.00, 95.18, 90.00	(Yamashit a <i>et al.</i> , 2005)
4US3	MhsT multi-hydrolphobic amino acid transporter	2.1	P 2	44.28, 49.89, 110.05	90.00, 96.76, 90.00	(Malinausk aite <i>et al.</i> , 2014)
4AV3	Na ⁺ -translocating M-PPase with metal ions in active site	2.6	P 2 ₁	83.52, 107.78, 102.52	90.00, 108.50, 90.00	(Kellosalo <i>et al.</i> , 2012)
5NG9	Glutamate receptor 2	1.15	P 2 ₁ 2 ₁ 2	62.22, 88.14, 47.96	90.00, 90.00, 90.00	(Mollerud <i>et al.</i> , 2017)
2W2E	Aqy1 yeast aquaporin (pH 3.5)	1.15	I 4	91.45, 91.45, 80.82	90.00, 90.00, 90.00	(Fischer <i>et</i> <i>al.</i> , 2009)
2NTU	Bacteriorhodopsin	1.53	P 6 ₃	60.97, 60.97, 110.39	90.00, 90.00, 120.00	(Lanyi & Schobert, 2007)
3HB3	Cytochrome C Oxidase	2.25	P 2 ₁ 2 ₁ 2 ₁	83.40, 150.47, 157.19	90.00, 90.00, 90.00	(Koepke <i>et</i> <i>al.</i> , 2009)
2J8C	Photosynthetic Reaction Center	1.9	P 3 ₁ 2 1	138.69, 138.69, 184.61	90.00, 90.00, 120.00	(Koepke <i>et</i> <i>al.</i> , 2007)
3C1J	AmtB (ammonia channel)	2.0	P6 ₃	110.23, 110.23, 84.64	90.00, 90.00, 120.00	(Javelle <i>et</i> <i>al.</i> , 2008)

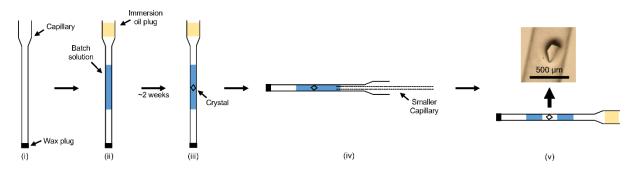
Table S1Favourable membrane protein cases suitable for NMX

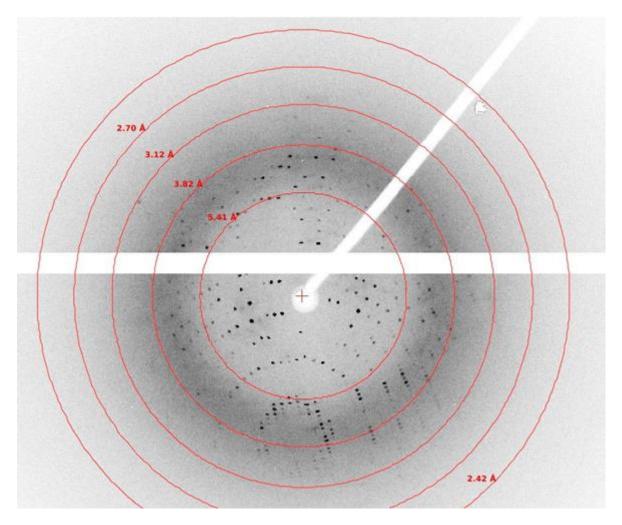

5WIU	Dopamine D ₄ receptor complexed with nemonapride	2.0	C 2 2 2 ₁	67.69, 164.05, 84.13	90.00, 90.00, 90.00	(Wang <i>et</i> <i>al.</i> , 2017)
6EU6	Sensor Amt Protein	2.0	P 6 ₃	99.75, 99.75, 89.07	90.00, 90.00, 120.00	(Pfluger <i>et</i> <i>al.</i> , 2018)
4RYQ	Translocator Protein (TSPO), apo type 2 monomer	1.7	P 2 ₁ 2 ₁ 2 ₁	28.71, 54.62, 106.91	90.00, 90.00, 90.00	(Guo <i>et al.</i> , 2015)
3TDO	FNT3 Hydrosulphide Channel (HSC), pH 9.0	2.2	P 2 ₁ 2 ₁ 2 ₁	98.82, 118.74, 149.82	90.00, 90.00, 90.00	(Czyzewsk i & Wang, 2012)

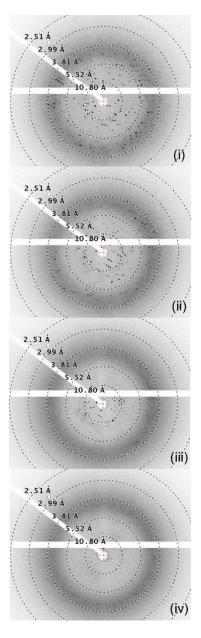
PDB	Crystal Form	Resolution (Å)	Space group	a, b, c (Å)	α, β, γ (°)	Ligands	Reference
1T5S	Ca2E1•AMPPC P	2.6	C 1 2 1	162.44, 76.26, 151.16	90.00, 108.70, 90.00	AMPPCP, Ca2+, K+, Mg2+	(Sorensen <i>et</i> <i>al.</i> , 2004)
1XPS	E2(TG)•AlF4-	3.0	P 2 ₁ 2 ₁ 2 ₁	86.51, 119.27, 142.26	90.00, 90.00, 90.00	Thapsigargin, AlF4, K+, Mg2+	(Olesen <i>et</i> <i>al.</i> , 2004)
1T5T	Ca2E1•AlF4- •ADP	2.9	C 1 2 1	162.48, 75.62, 151.65	90.00, 108.82, 90.00	ADP, AlF4, Ca2+, K+, Mg2+	(Sorensen <i>et</i> <i>al.</i> , 2004)
2C9M	Ca2E1	3.0	P 1	64.95, 81.28, 131.01	97.64, 99.94, 95.22	Ca2+, K+, Cl-	(Jensen <i>et</i> <i>al.</i> , 2006)
209J	E2(CPA)•MgF4 2-	2.65	C 1 2 1	175.38, 69.88, 143.41	90.00, 107.10, 90.00	CPA, MgF4-, Mg2+, Na+	(Moncoq <i>et</i> <i>al.</i> , 2007)
20A0	E2(CPA)•ADP	3.4	P 1 2 ₁ 1	62.50, 96.84, 154.86	90.00, 94.83, 90.00	ADP, CPA, Mg2+	(Moncoq <i>et</i> <i>al.</i> , 2007)
2EAR	E2(TG)	3.1	P 1 2 ₁ 1	62.85, 95.94, 154.49	90.00, 94.90, 90.00	Thapsigargin	(Takahashi <i>et al.</i> , 2007)
2EAT	E2(TG+CPA)	2.9	P 1 2 ₁ 1	62.90, 95.64, 155.10	90.00, 95.24, 90.00	Thapsigargin, CPA	(Takahashi <i>et al.</i> , 2007)
2ZBF	E2(TG)•BeF3-	2.4	P 2 ₁ 2 ₁ 2 ₁	90.52, 136.47, 106.62	90.00, 90.00, 90.00	Thapsigargin, BeF3-, Mg2+	(Toyoshima et al., 2007)
2ZBG	E2(TG)•AlF4-	2.55	C 1 2 1	117.50, 70.20, 143.40	90.00, 106.80, 90.00	Thapsigargin, AlF4-, Mg2+	(Toyoshima et al., 2007)


Table S2Favourable SERCA crystal forms for NMX

3B9R	E2(TG)•AlF4 AMPPCP	3.0	P 1 2 ₁ 1	131.98, 94.43, 136.18	90.00, 107.79, 90.00	AMPPCP, AlF4-, K+, Mg2+	(Olesen <i>et</i> <i>al.</i> , 2007)
3BA6	Ca2E1~P•AMP PN	2.8	C 1 2 1	162.51, 75.97, 152.41	90.00, 109.01, 90.00	AMP Phosphoramidate, Ca2+, K+	(Olesen <i>et</i> <i>al.</i> , 2007)
3FPB 2O9J	E2(CPA)•MgF4 2-•ATP	2.55	C 1 2 1	175.36, 69.87, 143.50	90.00, 107.16, 90.00	ATP, CPA, MgF42-, K+, Mg2+	(Laursen <i>et</i> <i>al.</i> , 2009)
3FPS 2OA0	E2(CPA)•ADP	3.2	P 1 2 ₁ 1	62.34, 96.50, 155.13	90.00, 94.84, 90.00	ADP, CPA, Mg2+	(Laursen <i>et</i> <i>al.</i> , 2009)
3AR8	E2(TG)•AlF4- •TNP-AMP	2.6	C 1 2 1	176.86, 69.87, 141.81	90.00, 106.71, 90.00	Thapsigargin, TNP-AMP, AlF4-, Mg2+, Na+	(Toyoshima <i>et al.</i> , 2011)
3AR9	E2(TG)-BeF3- •TNP-AMP	2.6	P 2 ₁ 2 ₁ 2	90.39, 135.81, 105.43	90.00, 90.00, 90.00	Thapsigargin, TNP-AMP, BeF3-, Mg2+, Na+	(Toyoshima <i>et al.</i> , 2011)
4YCL	E2(CPA)	3.25	P 1 2 ₁ 1	63.04, 96.03, 155.42	90.00, 95.09, 90.00	CPA, K+, Mg2+	(Takahashi <i>et al.</i> , 2007)
5A3Q	E2(TG)•VO3- •TNP-AMPPCP	3.05	P 2 ₁ 2 ₁ 2	86.43, 118.78, 141.83	90.00, 90.00, 90.00	TNP-AMPPCP, Thapsigargin,vana dium, K+, Cl-, Mg2+	(Clausen <i>et</i> <i>al.</i> , 2016)
5A3S	E2(TG)•VO3- •TNP-ATP	3.3	P 1 2 ₁ 1	130.56, 93.78, 135.69	90.00, 107.26, 90.00	TNP-ATP, Thapsigargin,vana dium, K+, Cl-, Mg2+	(Clausen <i>et</i> <i>al.</i> , 2016)
5XA7	Ca2E1	3.2	C 1 2 1	166.20, 64.54, 146.22	90.00, 98.12, 90.00	1,2-dioleoyl-SN- glycero-3- phosphocholine, Ca2+, Na+	(Norimatsu et al., 2017)
5XA8	Ca2E1•AlF4- •ADP	3.2	C 1 2 1	162.97, 75.02, 152.24	90.00, 109.31, 90.00	1,2-dioleoyl-SN- glycero-3- phosphocholine,	(Norimatsu et al., 2017)


ADP, AlF4-,Ca2+, Mg2+


Figure S1 Decoupling nucleation and growth phases. Nucleation (i) occurs at typical (< 5 μ L) drop volumes over a period of ~24 hours (before crystals develop beyond infancy). A high volume of protein-rich solution is added to the initial drop, bringing the combined conditions into the \uparrow [protein] / \downarrow [precipitant] area of the metastable zone (ii). Protein concentration drops as a few nuclei survive to become fully-fledged crystals and the mother liquor proceeds towards the solubility line (iii). Careful selection of reservoir composition and volume keeps the mother liquid in the metastable phase – counteracting the loss of [protein] due to crystal growth by increasing [precipitant] *via* vapour diffusion – and results in crystals of maximal size when the solubility line is reached (iv). As crystal growth occurs along a smooth and uninterrupted phase-time pathway, diffraction quality should be maximised.


Figure S2 Dynamics of counter-diffusion crystallisation. Initially, a supersaturation wave moves along the capillary, sporadically crossing the nucleation threshold and forming nuclei (**i**). Afterwards, a more stable [precipitant] gradient combines with the remaining pockets of high (and varying) supersaturation, and nuclei develop into a mixture of crystal polymorphs and precipitates (**ii**). This gradient slowly moves through the capillary, counteracting the drive towards the solubility line as protein leaves the solution as precipitate or crystal growth (**iii**). Excessive [precipitant] near the physical buffer forces all excess protein to drop out as precipitate, and the mother liquor reaches the solubility limit. Further along the capillary, [precipitant] is more optimal, keeping the mother liquor within the metastable (growth) zone and resulting in large crystals. The red/orange colour inside capillaries indicates that various amounts of protein precipitation is normally observed.

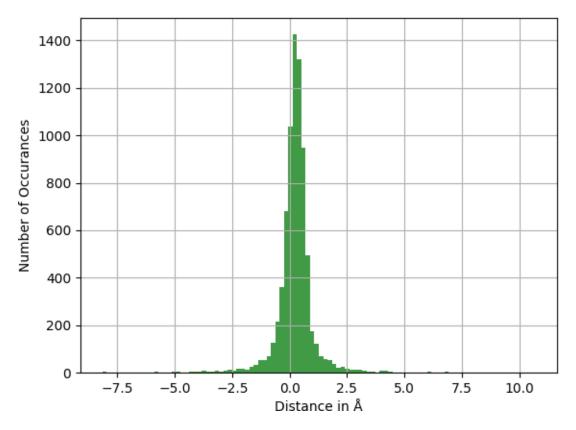

Figure S3 Mounting single SERCA crystals in capillary. Capillary bottoms were first sealed with wax (i), before batch solution was injected into the middle of the capillary – leaving an air gap above and below the batch solution – and the capillary top was sealed with immersion oil (ii). After a period of \sim 2 weeks, a few single crystals developed within the batch solution (iii). A suitable crystal was selected, the immersion oil plug removed, and a smaller capillary was inserted into the crystal-containing capillary (iv). This smaller capillary was used to suck out the mother liquor surrounding the crystal, after which it was removed and the crystal-containing capillary re-sealed with immersion oil (v). The isolated crystal was now ready to be mounted directly onto the X-ray goniometer for diffraction studies.

Figure S4 Diffraction image. The maximum diffraction of the tested Ca₂E1-AMPPCP crystals was \sim 3.0 Å. The frame shown is of an initial test shot of comprising a 0.5 ° rotation over a 35 s exposure.

Figure S5 Examples of radiation sensitivity. Images $\mathbf{i} - \mathbf{iv}$ (corresponding to frames 1, 60, 120, and 180 respectively) show the loss of diffraction quality over time. Each frame comprised of a 0.5 ° rotation over a 35 s exposure, meaning maximum resolution deteriorated from ~3.5 Å (\mathbf{i}) to ~8 Å (\mathbf{iii}) over a time period of only 70 mins.

Figure S6 Temperature-dependent perturbation of the SERCA1 structure. The distances from each atom in the structures to the protein centre-of-mass is compared for the RT (6hef) and cryo (3n8g) structures. The histogram shows the distribution of the differences in distance for equivalent atoms in the two structures (mean=0.26, SD=0.91).