

Volume 73 (2017) Supporting information for article:

2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update Jill Trewhella, Anthony P. Duff, Dominique Durand, Frank Gabel, J. Mitchell Guss, Wayne A. Hendrickson, Greg L. Hura, David A. Jacques, Nigel M. Kirby, Ann H. Kwan, Javier Pérez, Lois Pollack, Timothy M. Ryan, Andrej Sali, Dina Schneidman-Duhovny, Torsten Schwede, Dmitri I. Svergun, Masaaki Sugiyama, John A. Tainer, Patrice Vachette, John Westbrook and Andrew E. Whitten

Supporting Information

Table S1Reporting template for tabulating essential SAS data acquisition, sample details, dataanalysis, modelling fitting and software used.

(a) Sample details			
	Sample 1	Sample 2	Sample 3, etc.
Organism			
Source (Catalogue No. or reference)			
Description: sequence (including Uniprot ID + uncleaved			
tags), bound ligands/modifications, etc.			
Extinction coefficient ε (wavelength and units)			
Partial specific volume $\overline{\upsilon}$ (cm ³ g ⁻¹)			
Mean solute and solvent scattering length densities and			
mean scattering contrast $\Delta \overline{\rho}$ (cm ⁻²)			
Molecular mass <i>M</i> from chemical composition (Da)			
For SEC-SAS, loading volume/concentration, (mg ml ⁻¹)			
injection volume (μ l), flow rate (ml min ⁻¹)			
Concentration (range/values) measured and method			
Solvent composition and source			
(b) SAS data collection parameters			
Source, instrument and description or reference			
Wavelength (Å)			
Beam geometry (size, sample-to-detector distance)			
q-measurement range (Å ⁻¹ or nm ⁻¹)			
Absolute scaling method			
Basis for normalization to constant counts			
Method for monitoring radiation damage, X-ray dose when	e relevant		
Exposure time, number of exposures			
Sample configuration including path length and flow rate v	where relevant		
Sample temperature (°C)			
(c) Software employed for SAS data reduction, analys	sis and interpr	etation	
SAS data reduction to sample-solvent scattering, and			
extrapolation, merging, desmearing etc. as relevant			

Calculation of ε from sequence

Calculation of $\Delta\bar{\rho}$ and $\,\overline{\upsilon}$ values from chemical composition

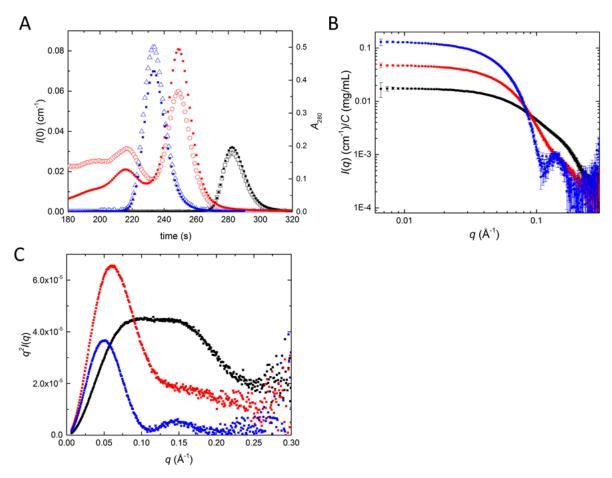
Basic analyses: Guinier, P(r), scattering particle

volume (e.g. Porod volume $V_{\rm P}$ or volume of correlation $V_{\rm c}$)

Shape/bead modelling

Atomic structure modelling (homology, rigid body, ensemble)

Modelling of missing sequence from PDB files


Molecular graphics

(d) Structural parameters			
Guinier Analysis	Sample 1	Sample 2	Sample 3, etc.
$I(0) (\text{cm}^{-1})$			
$R_{\rm g}({ m \AA})$			
q-range (Å ⁻¹)			
Quality-of-fit parameter (with definition)			
M from $I(0)$ (ratio to expected value)			
P(r) analysis	Sample 1	Sample 2	Sample 3, etc.
$I(0) (\text{cm}^{-1})$			
$R_{\rm g}({ m \AA})$			
$d_{\max}(\text{\AA})$			
q-range (Å ⁻¹)			
Quality-of-fit parameter (with definition)			
M from $I(0)$ (ratio to expected value)			
Volume (e.g. $V_{\rm P}$ and/or $V_{\rm c}$)			
(e) Shape modelling results (a complete panel for	each method)		
	Sample 1	Sample 2	Sample 3, etc.
<i>q</i> -range for fitting			
Symmetry/anisotropy assumptions			
Ambiguity measure(s) with definitions			
χ^2 value/range			
P value, any other quality-of-fit parameters			
Adjustable parameters in the model fit			
Model volume and/or <i>M</i> estimate			
Model precision/resolution			
For multiple phase shape models, $R_{\rm g}$ values and			
relative phase volumes			
(f) Atomistic modelling			
	Sample 1	Sample 2	Sample 3, etc.
Method			

Symmetry assumptions

Any measures of model precision

 $\chi^{2} \text{ value/range}$ P value, any other quality-of-fit parametersAdjustable parameters in the model fit
Relevant output parameters (*e.g.* predicted R_{g}/d_{max} values,
weights for multi-state models, *etc.*)
Domain/subunit coordinates and contacts, regions of
presumed flexibility as appropriate
(g) Data and model deposition IDs
Sample 1 Sample 2 Sample 3 *etc.*

Figure S1

A. Overlaid plots of I(0) (filled symbols) and A280 (hollow symbols) as a function of time/measurement frame showing the good correspondence in peak shape that facilitates concentration estimates for a set of 1 second measurement frames. These plots are raw values and have not been corrected for the shortened pathlengths for the shear-flow cell of UV cell. **B.** $\log I(q) \vee \log q$ plots showing the expected near zero slope at low-*q* expected for monodisperse scattering particles of similar size. **C.** Kratky plots for GI, BSA, and CaM. The rising Kratky plot for *q* values > 0.25 Å⁻¹ for BSA and CaM are indicative of flexibility in these proteins. Color key is as in main figures: GI (blue), CaM (black) and BSA (red).