

STRUCTURAL Biology

Volume 72 (2016)
Supporting information for article:

Molecular architecture of the nucleoprotein C-terminal domain from the Ebola and Marburg viruses

Laura E. Baker, Jeffrey F. Ellena, Katarzyna B. Handing, Urszula Derewenda, Darkhan Utepbergenov, Daniel A. Engel and Zygmunt S. Derewenda

Figure S1. A Coomassie-stained 15% SDS-PAGE gel showing the final NP ${ }^{C t}$ samples used for crystallization. The lanes are as follows: M) molecular-weight markers, 1) RESTV $N P^{C t}$, 2) BDBV $N P^{C t}$, 3) SUDV $N^{C t}$, 4) TAFV $N P^{C t}$, and 5) MARV NP ${ }^{C t}$.

Figure S2. Raw data for scanning fluorescence (Thermal stability assay) for the Reston and Marburg $\mathrm{NP}^{\mathrm{Ct}}$ proteins. Details in the text.

A

B

Figure S3: Two perpendicular views of the packing of molecules of Bundibugyo $\mathrm{NP}^{\mathrm{Ct}}$ around the three-fold screw axis. (A) View perpendicular to the symmetry axis; the contact between molecules 0(rainbow) and -1 (grey) involves involves the N -termini (shown as sticks); the contact between molecules 0 and 1 (magenta) involves the interaction of the α-helical hairpins. The $0 /-1$ dimer is then rotated 120° and translates $1 / 3$ along the crystallographic three-fold screw axis Molecules 2-4 are shown in white. (B) View down the crystallographic three-fold screw axis.

Figure S4. Backbone segmental order parameter versus residue number. Order parameters were obtained from backbone ${ }^{1} \mathrm{H}$ (except $\left.\mathrm{H} \alpha\right),{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ chemical shifts by the method of (Berjanskii \& Wishart, 2005).

Berjanskii, M. V. \& Wishart, D. S. (2005). J Am Chem Soc 127, 14970-14971.

