Data treatment for the Z-scan

The best fit for the data was obtained for a two-photon process described by the non-linear transmission equation (1) (Sutherland, 1996):

$$T = \left(\frac{(1-R)^2 \exp(-\alpha L)}{\sqrt{\pi q_o}}\right)_{-\infty}^{+\infty} In\sqrt{1+q_o} \exp(-t^2)dt$$

where T is the intensity dependent transmittance of the sample. L is the length of the sample, and R is its surface reflectivity. α is the linear absorption coefficient. q_0 is given by $\beta(1-R)I_0L_{eff}$, where β is the two-photon absorption coefficient and I_0 is the peak intensity. L_{eff} is given by [1-exp(-aL)]/a. In the present case the quantity β is the effective 2PA coefficient, which has contributions from both resonant and non-resonant nonlinear processes (ESA and 2PA respectively). The resonant term is given by the expression $\beta_{ESA}I = \sigma N$, where σ is the ESA cross-section and N (I) is the intensity-dependent excited states population density.

By determining the best-fit curve for the Z-scan data, the effective two-photon absorption coefficient β is calculated to be 0.13×10^{-10} m W⁻¹. Under similar excitation conditions, N-benzylideneaniline Schiff base NLO materials like 4-bromo-4'-nitrobenzilideneaniline (Subashini *et al.*, 2013b) and 4-bromo-4'-dimethylaminobenzylideneaniline (Subashini *et al.*, 2013*a*) exhibit effective 2PA coefficient values in the range of 10^{-11} – 10^{-12} m W⁻¹. An ideal optical limiting material should strongly attenuate intense and potentially dangerous laser beams, while exhibiting high transmittance for low intensity ambient light (Jiang *et al.*, 2011). To characterize the optical limiting performance of the material, energy transmission of the sample was calculated as a function of input fluence. Since a spatially Gaussian laser beam is used, each Z position will correspond to an input laser energy density (fluence), given by eqn. (2)

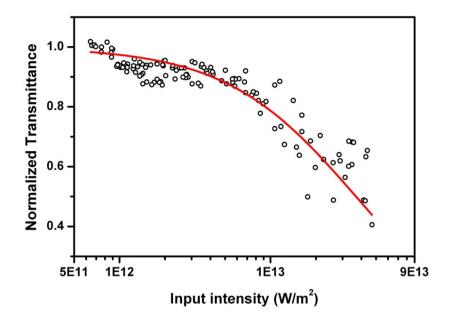
 $E(z) = 4(\ln 2)^{1/2}E_{in} / \pi^{3/2}\omega(z)^2$ (2)

Where E_{in} is the input laser pulse energy. $\omega(z)$ is the beam radius given by eqn. (3)

$$\omega(z) = \omega(0) [1 + (z/z_0)^2]^{1/2} (3)$$

where $\omega(0)$ is the beam radius at the focus and $z_0 = \pi \omega(0)^2/l$ is the Rayleigh range (diffraction length). l is the excitation wavelength.

Fig. S3 shows the optical limiting curve of the sample, which is calculated from the Z-scan data using equations **2** and **3**. Thus, the sample of Form II shows optical limiting behaviour.



References

Jiang, Y., Wang, Y., Yang, J., Hua, J., Wang, B., Qian, S. & Tia, H. (2011). *J. Poly. Sci. A: Poly. Chem.*, 49, 1830–1839.

Sutherland, R. L. (1996). Handbook of Nonlinear Optics. Marcel Dekker Inc., Germany.