Supporting Information for

Structural characterization and antimycobacterial evaluation of a benzimidazole analogue of the anti-tuberculosis clinical drug candidate TBA-7371

Adrian Richter, Richard Goddard, Roy Schönefeld, Peter Imming and Rüdiger W. Seidel

Contents

- 1. General (p. 1)
- 2. Analytical data (p. 2)
- 3. Antimicrobial susceptibility testing (p. 12)

1. General

Compound **1** was synthesized as described in the literature (Manjunatha *et al.*, ACS Med. Chem. Lett. 2019, 10, 1480-1485) Starting materials were of reagent grade quality and used as received. Flash chromatography for compounds **A**, **B**, **C** and **1** was carried out with an InterChim PuriFlash 430 instrument (SiO₂, heptane/ethyl acetate gradient). Compound **D** was used as crude product without purification. NMR spectra were recorded on an Agilent Technologies VNMRS 400 or a Varian INOVA 500 NMR spectrometer. ¹H and ¹³C chemical shifts are reported relative to the residual solvent signal of chloroform-*d* ($\delta_{H} = 7.26$ ppm; $\delta_{C} =$ 77.0 ppm). The ¹⁹F chemical shift for **1** is reported relative to the signal of CFCl₃ ($\delta_{F} = 0$ ppm) as an external standard. Abbreviations: s = singlet, d = doublet, dd = doublet of doublets, t =triplet, tt = triplet of triplets. The APCI mass spectrum for **C** was measured on an Advion Expressio S mass spectrometer, and the high-resolution ESI mass spectrum for **1** was recorded on a Bruker Daltonics Apex II FT-ICR mass spectrometer. HPLC analyses were performed using an Agilent 1260 HPLC instrument with UV diode array detection (50 mm Eclipse Plus C18 1.8 µm, 4.6 mm, methanol/water gradient, v = 1.0 mL min⁻¹, $\lambda = 220$ nm).

Analytical data

Methyl 1H-benzo[d]imidazole-4-carboxylate (A)

¹H NMR (400 MHz, chloroform-*d*) δ 10.53 (s, 1H), 8.15 (s, 1H), 8.05 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 4.01 (s, 3H) ppm.

Figure S1 ¹H NMR spectrum of **A** in chloroform-*d* at room temperature. S denotes the residual solvent signal.

Methyl 1-((6-methoxy-5-methylpyrimidin-4-yl)methyl)-1H-benzo[d]imidazole-4-carboxylate (**B**)

¹H NMR (400 MHz, chloroform-*d*) δ 8.56 (s, 1H), 8.17 (s, 1H), 8.00 (d, *J* = 7.9, 1H), 7.62 (d, *J* = 7.9, 1H), 7.32 (t, *J* = 7.9 Hz, 1H), 5.42 (s, 2H), 4.06 (s, 3H), 3.99 (s, 3H), 2.20 (s, 3H) ppm.

Figure S2 ¹H NMR spectrum of **B** in chloroform-d at room temperature. S denotes the residual solvent signal.

 $Methyl \ 1-((6-methoxy-5-methylpyrimidin-4-yl)methyl)-1H-benzo[d] imidazole-7-carboxylate ({\bf C})$

¹H NMR (400 MHz, chloroform-*d*) δ 8.33 (s, 1H), 7.98 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.95 (s, 1H), 7.78 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.26 (t, *J* = 7.9 Hz, 1H), 5.82 (s, 2H), 3.95 (s, 3H), 3.73 (s, 3H), 2.21 (s, 3H) ppm.

Figure S3 ¹H NMR spectrum of C in chloroform-d at room temperature. S denotes the residual solvent signal.

¹³C NMR (101 MHz, chloroform-*d*) δ 167.8, 166.8, 161.3, 155.3, 147.0, 145.9, 132.8, 126.4, 125.4, 121.4, 117.0, 114.5, 54.2, 52.2, 49.7, 9.7 ppm.

Figure S4 ¹³C NMR spectrum of **C** in chloroform-*d* at room temperature. S denotes the residual solvent signal.

Figure S4 APCI⁺ mass spectrum of C in methanol.

N-(2-fluoroethyl)-1-((6-methoxy-5-methylpyrimidin-4-yl)methyl)-1H-benzo[d]imidazole-4-carboxamide (1)

¹H NMR (400 MHz, chloroform-*d*) δ 10.13 – 10.03 (m, 1H), 8.54 (s, 1H), 8.15 (dd, *J* = 7.6, 1.0 Hz, 1H), 8.10 (s, 1H), 7.52 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 5.41 (s, 2H), 4.72 (t, *J* = 5.0 Hz, 1H), 4.60 (t, *J* = 5.0 Hz, 1H), 3.99 (s, 3H), 3.93 (q, *J* = 5.2 Hz, 1H), 3.86 (q, *J* = 5.2 Hz, 1H), 2.24 (s, 3H) ppm.

Figure S5 ¹H NMR spectrum of 1 in chloroform-d at room temperature. S denotes the residual solvent signal.

¹³C NMR (126 MHz, chloroform-*d*) δ 168.4, 165.9, 159.0, 155.8, 143.7, 141.3, 134.3, 124.3, 123.6, 123.2, 116.1, 113.6, 83.1 (d, ¹*J*_{*C,F*} = 167 Hz), 54.5, 47.5, 40.2 (d, ²*J*_{*C,F*} = 21 Hz), 10.3 ppm.

Figure S6¹³C NMR spectrum of **1** in chloroform-*d* at room temperature. S denotes the residual solvent signal.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -223.01 (tt, $J_{H,F}$ = 47.5, 27.2 Hz) ppm.

Figure S7 ¹⁹F NMR spectrum of 1 in chloroform-d at room temperature.

Figure S8 1 H- 13 C HSQC NMR spectrum of 1 in chloroform-*d* at room temperature.

HRMS(ESI): m/z calcd. for $C_{17}H_{19}FN_5O_2^+$ [M+H]⁺, 344.1517; found, 344.1519, $C_{17}H_{18}FN_5NaO_2^+$ [M+Na]⁺, 366.1317; found, 366.1341.

Figure S9 HRMS(ESI⁺) spectrum of **1** in methanol.

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area%
1	5,903	124569	1643	1,884
2	10,047	6454580	297459	97,595
3	14,314	34468	1349	0,521
Total		6613618	300451	100,000

Figure S10 HPLC analysis of 1.

3. Antimicrobial susceptibility testing

MIC₉₀ determination by optical density (OD) measurements

MICs were determined against *M. smegmatis* mc² 155 pTEC27 and *M. abscessus* ATCC 19977 pTEC27 by the broth microdilution method in Middlebrook 7H9 medium + 10 % ADS + 0.05 % polysorbate 80 and in Mueller Hinton II Broth + 0.05 % polysorbate 80. A nine-point twofold serial dilution of each compound was prepared in 96-well flat clear bottom plates (Sarstedt, 3924500). Column 1 contained only medium as sterile control, column 2 positive controls (100 μ M amikacin) and column 3 negative controls (1 % DMSO). The starting inoculum was diluted from a preculture at the mid-log phase (OD₆₀₀ = 0.2 - 0.8). The concentration of the inoculum was standardized to approximately 5 × 10⁵ cells/mL (OD₆₀₀ = 0.1 was equivalent to 1 × 10⁸ CFU/ml). The plates were sealed with Parafilm, placed in a container with moist tissue and incubated for 3 days at 37 °C. The assays were performed in duplicate. After incubation, the OD₅₅₀ was measured with a BMG Labtech Fluostar Optima plate reader.

Calculation of % growth inhibition

The controls were used to monitor the assay quality through the determination of the Z-score and for normalizing the data on a plate basis. The Z-score was determined using the following equation:

$$Z' = 1 - \frac{3(SD_{amikacin} + SD_{DMSO})}{M_{amikacin} - M_{DMSO}}$$

(SD: standard deviation; M: mean)

% Growth inhibition was calculated as follows:

% inhibition =
$$-100 \% \times \frac{OD(sample)-OD(DMSO)}{OD(DMSO)-OD(amikacin)}$$

Mean values were calculated from both duplicates and the lowest concentration with a growth inhibition > 90 % was reported as MIC₉₀.