


Figure 1S: Views of Hirshfeld surfaces mapped with  $d_{norm}$  properties of the  $(N_2H_5)_2SiF_6$  compound.

## Spectroscopic characterization of (N<sub>2</sub>H<sub>5</sub>)<sub>2</sub>SiF<sub>6</sub>

The Infrared spectrum of  $(N_2H_5)_2SiF_6$  is given in supplementary material. The bands' assignment (supplementary material) is carried out based on previous works for homologous alkylammoniums compounds (Ouasri *et al.*, 2002, Gantar & Rahten, 1986). The cationic bands observed in 3300-2800 cm<sup>-1</sup> and 1664- 974 cm<sup>-1</sup> frequency ranges are due to N–H stretching modes,  $v_{as}$  (NH<sub>3</sub>)/ $v_{as}$ (NH<sub>2</sub>),  $v_s$  (NH<sub>3</sub>)/ $v_s$ (NH<sub>2</sub>) vibrations, r (NH<sub>3</sub>) and v (N–N) vibrations. The bands observed below 750 cm<sup>-1</sup> are assigned to (SiF<sub>6</sub>)<sup>2-</sup> internal vibrations. The free SiF<sub>6</sub><sup>2-</sup> anions (O<sub>h</sub> symmetry) possess the internal vibrational modes: 1A<sub>1g</sub> (Ra) +1E<sub>g</sub> (Ra) + 1F<sub>2g</sub> (Ra) + 2F<sub>1u</sub> (IR) + 1F<sub>2u</sub> (In). Inside the (N<sub>2</sub>H<sub>5</sub>)<sub>2</sub>SiF<sub>6</sub> crystal (P<sub>21</sub>/n centrosymmetric space group), the SiF<sub>6</sub><sup>2-</sup> anions occupied C<sub>i</sub> sites and, as a result, the A<sub>1g</sub> [ $v_1$  (Si-F)], E<sub>g</sub> [ $v_2$  (Si-F)] and F<sub>2g</sub> [ $v_5$  (F-Si-F)] modes are expected to be only Raman active and not infrared active. The two bands observed at 726 and 651 cm<sup>-1</sup> are due to F<sub>1u</sub> [ $v_3$  (F-Si)] vibrations, while that observed at 474 and 435 cm<sup>-1</sup> are assigned to F<sub>1u</sub> [ $v_4$  (F-Si-F)] vibrations modes.

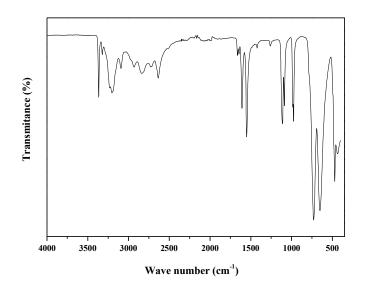



Figure 2s: Infrared spectrum of  $(N_2H_5)_2SiF_6$  compound recorded at room temperature in the 400 - 4000 cm<sup>-1</sup> spectral range.

Table 1s: Infrared bands assignments for (N<sub>2</sub>H<sub>5</sub>)<sub>2</sub>SiF<sub>6</sub>.

| Infrared (cm <sup>-1</sup> ) | Assignment                         |
|------------------------------|------------------------------------|
| 3368m                        | v <sub>as</sub> (NH <sub>3</sub> ) |

| 3323w  | v <sub>as</sub> (NH <sub>2</sub> )        |
|--------|-------------------------------------------|
| 3235sh | v <sub>s</sub> (NH <sub>3</sub> )         |
| 3209m  | v <sub>s</sub> (NH <sub>2</sub> )         |
| 3095w  | δ <sub>s</sub> (NH <sub>3</sub> )         |
| 2928w  | $\delta_{s}(NH_{2})$                      |
| 2836w  |                                           |
| 2722w  | Non fundamental modes                     |
| 2634m  |                                           |
| 1664w  | $\delta_{as}(NH_3)/\delta_{as}(NH_2)$     |
| 1613s  | $\delta_{as} (NH_3) / \delta_{as} (NH_2)$ |
| 1550s  | $\delta_{s}(NH_{3})/\delta_{s}(NH_{2})$   |
| 1259s  | r(NH <sub>3</sub> )                       |
| 1113s  | r(NH <sub>3</sub> )/v <sub>as</sub> (N-N) |
| 1082m  | r(NH <sub>3</sub> )/v <sub>s</sub> (N-N)  |
| 974s   | r(NH <sub>3</sub> )                       |
| 726vs  | v <sub>3</sub> (Si-F)                     |
| 651s   | v <sub>3</sub> (Si-F)                     |
| 474m   | v4(F-Si-F)                                |
| 435w   | v4(F-Si-F)                                |
|        |                                           |

vs: very strong; s: strong; m: medium; w: weak; sh: shoulder