Supplementary information file S1.

The puckering parameters (Cremer \& Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) for compounds (I) and (II) - molecules A and B, are as follows:

For the five membered pyrrolidine ring $\mathrm{q} 2=0.404$ (2) $\AA, \varphi=16.0$ (1) $)^{\circ}, \Delta \mathrm{S}(\mathrm{N} 1)$ is 13.4 (2) ${ }^{\circ}$ and $\Delta 2(\mathrm{C} 21)$ is 4.4 (2) ${ }^{\circ}$ in (I), and $\mathrm{q} 2=0.400$ (2) $\AA, \varphi=199.7$ (2) $)^{\circ}, \Delta \mathrm{S}(\mathrm{N} 1 \mathrm{~A})$ is 16.5 (2) $)^{\circ}$ and $\Delta 2(\mathrm{C} 21 \mathrm{~A})$ is $1.7 \quad$ (2) $)^{\circ}$ for molecule $\mathrm{A}, \mathrm{q} 2=0.414$ (2) $\AA, \varphi=23.9$ (2) ${ }^{\circ}$, $\Delta \mathrm{S}(\mathrm{C} 12 \mathrm{~B})$ is $14.0 \quad$ (2) ${ }^{\circ}$ and $\Delta 2(\mathrm{C} 21 \mathrm{~B})$ is 5.5 (2) ${ }^{\circ}$ for molecule B in (II).

For the six membered pyran ring $\mathrm{q} 2=0.448$ (2) $\AA$, $\varphi=123.4$ (3) $)^{\circ}, \Delta \mathrm{S}(\mathrm{C} 14 / \mathrm{C} 20)$ is 6.2 (2) and $\Delta 2(\mathrm{C} 19 / \mathrm{C} 21)$ is 55.0 (2) $)^{\circ}$ in (I), and, $\mathrm{q} 2=0.435$ (2) $\AA, \varphi=303.0$ (2) $)^{\circ}, \Delta \mathrm{S}(\mathrm{C} 14 \mathrm{~A} / \mathrm{C} 20 \mathrm{~A})$ is 6.2 (2) $)^{\circ}$ and $\Delta 2(\mathrm{C} 19 \mathrm{~A} / \mathrm{C} 21 \mathrm{~A})$ is 58.3 (2) for molecule $\mathrm{A}, \mathrm{q} 2=0.377$ (2) $\AA$, $\varphi=115.5$ (2) ${ }^{\circ}, \Delta \mathrm{S}(\mathrm{C} 14 \mathrm{~B} / \mathrm{C} 20 \mathrm{~B})$ is 1.0 (2) $)^{\circ}$ and $\Delta 2(\mathrm{O} 2 \mathrm{~B} / \mathrm{C} 13 \mathrm{~B})$ is 60.51 (2) $)^{\circ}$ for molecule B in (II).

For the six membered piperidine ring $\mathrm{q} 2=0.021$ (2) $\AA, \varphi=55 \quad$ (2) $)^{\circ}, \Delta \mathrm{S}(\mathrm{N} 1 / \mathrm{C} 24)$ is 1.9 (2) ${ }^{\circ}$ and $\Delta 2$ is 115.5 (2) ${ }^{\circ}$ in (I), and q2 $=0.036$ (2) $\AA, \varphi=218$ (2) $)^{\circ}, \Delta \mathrm{S}(\mathrm{N} 1 \mathrm{~A} / \mathrm{C} 24 \mathrm{~A})$ is $2.0 \quad(2)^{\circ}$ and $\Delta 2$ is 115.3 (2) ${ }^{\circ}$ for molecule $\mathrm{A}, \mathrm{q} 2=0.019$ (2) $\AA, \varphi=38$ (2) ${ }^{\circ}$, $\Delta \mathrm{S}(\mathrm{N} 1 \mathrm{~B} / \mathrm{C} 24 \mathrm{~B})$ is 0.7 (2) ${ }^{\circ}$ and $\Delta 2$ is 116.0 (2) ${ }^{\circ}$ for molecule B in (II).

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354--1358.
Nardelli, M. (1983). Acta Cryst. C39, 1141--1142.

