research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Coordination complexes of chromium(0) with a series of 1,3-di­phenyl-6-aryl­fulvenes

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA, and bAerospace Systems Directorate, Air Force Research Laboratory, Edwards AFB, CA 93524, USA
*Correspondence e-mail: scott.iacono@usafa.edu

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 10 July 2018; accepted 25 July 2018; online 10 August 2018)

The synthesis and structural properties of a series of chromium tricarbonyl `piano-stool' complexes bearing substituted penta­fulvene ligands were studied. The complexes, tricarbon­yl(1,3,6-tri­phenyl­fulvene)chromium(0) benz­ene hemisolvate, [Cr(C24H18)(CO)3]·0.5C6H6 (I), tricarbon­yl[1,3-di­phen­yl-6-(3-vinyl­phen­yl)fulvene]chromium(0), [Cr(C26H20)(CO)3] (II), and tricarbon­yl[1,3-diphenyl-6-(pyren-1-yl)fulvene]chromium(0), [Cr(C34H22)(CO)3] (III), each have a distorted octa­hedral geometry, with the fulvene coordinated in a πη2:πη2:πη2 fashion. Significant deviation of the exocyclic fulvene double bond from the cyclo­penta­diene plane accompanies coordination. Evidence of non-covalent ππ inter­actions was observed in both (I) and (III), with centroid-to-centroid distances ranging from 3.330 (8) to 3.494 (8) Å.

1. Chemical context

Penta­fulvenes have been investigated because of their unique cross-conjugated electronic system. Despite the ability to tune the fulvene's steric and electronic properties through substitution, their coordination chemistry remains relatively unexplored. As a result of their electronic structure, fulvenes display a variety of coordination behaviors with metals, ranging from πη2, typically with late transition metals (O'Conner et al., 1997[O'Connor, J. M., Hiibner, K., Merwin, R., Gantzel, P. K., Fong, B. S. L., Adams, M. & Rheingold, A. L. (1997). J. Am. Chem. Soc. 119, 3631-3632.]), to πη5:ση1,which is more common with early transition metals (Ebert et al., 2014[Ebert, H., Timmermann, V., Oswald, T., Saak, W., Schmidtmann, M., Friedemann, M., Haase, D. & Beckhaus, R. (2014). Organo­metallics, 33, 1440-1452.]). Metal–fulvene complexes have been probed for hydro­amination catalysis (Janssen et al., 2010[Janssen, T., Severin, R., Diekmann, M., Friedemann, M., Haase, D., Saak, W., Doye, S. & Beckhaus, R. (2010). Organometallics, 29, 1806-1817.]), olefin metathesis (Erker et al., 1991[Erker, G., Nolte, R., Aul, R., Wilker, S., Krueger, C. & Noe, R. (1991). J. Am. Chem. Soc. 113, 7594-7602.]), and cytotoxicity (Deally et al., 2011[Deally, A., Gleeson, B., Müller-Bunz, H., Patil, S., O'Shea, D. F. & Tacke, M. (2011). J. Organomet. Chem. 696, 1072-1083.]). Reduction to yield a cyclo­penta­diene ligand (Gómez-Ruiz et al., 2005[Gómez-Ruiz, S., Höcher, T., Prashar, S. & Hey-Hawkins, E. (2005). Organometallics, 24, 2061-2064.]) or reductive coupling to form ansa bis-cyclo­penta­diene ligands (Adas & Balaich, 2018[Adas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200-206.]) are the most common examples of fulvene reaction chemistry. Herein, we report on the synthesis and structural properties of a series of chromium(0) complexes formed from 1,3-diphenyl-6-aryl fulvenes.

[Scheme 1]

2. Structural commentary

Complex I crystallizes in the monoclinic space group P21/n, (Fig. 1[link]), complex II in the monoclinic space group P21/c (Fig. 2[link]), and complex III in the triclinic space group P[\overline{1}] (Fig. 3[link]), each with one mol­ecule per asymmetric unit. A benzene mol­ecule was found co-crystallized and located on an inversion center in the structure of I. In each complex, the coord­ination geometry around the chromium(0) atom is distorted octa­hedral, with the midpoints of the three formal fulvene double bonds and the three carbonyl carbons describing the six verticies of the octa­hedra. Analysis of the fulvene bond lengths when compared to the previously reported uncomplexed fulvenes reveals nearly unchanged C—C single bonds (C1—C5, C4—C5, and C2—C3) with slight elongation of the C=C double bonds (C1=C2, C3=C4, and C5=C6) (Table 1[link]). This double-bond elongation is typical upon π-coordination to a metal atom. Based upon the alternating short and long bond distances, the coordination mode of the fulvene to the chromium atom is best described as πη2:πη2:πη2 in nature. Additionally, the coordination of the fulvene exocyclic double bond (C5=C6) results in the bending of this bond from the cyclo­penta­diene plane by 33.22 (18) to 34.2 (3)°. This is in agreement with a previously reported chromium complex with 6,6-di­methyl­fulvene (Konietzny et al., 2010[Konietzny, S., Finze, M. & Reiss, G. J. (2010). J. Organomet. Chem. 695, 2089-2092.]).

Table 1
Selected geometric parameters (Å, °) for I, II, and III and the corresponding fulvenes

  I 1,3,6-tri­phenylfulvenea II 1,3-diphenyl-6-(3-vinylphen­yl)fulveneb III 1,3-diphenyl-6-(1-pyrene)fulvenea
C1—C5/C4—C5 1.468 (5)/1.444 (6) 1.4860 (15)/1.4599 (16) 1.468 (4)/1.449 (4) 1.484 (2)/1.462 (2) 1.463 (2)/1.454 (2) 1.488 (2)/1.459 (2)
C1=C2/C3=C4 1.401 (5)/1.416 (5) 1.3553 (16)/1.3603 (16) 1.403 (4)/1.406 (4) 1.357 (2)/1.360 (2) 1.406 (2)/1.412 (2) 1.353 (2)/1.363 (2)
C2—C3 1.435 (5) 1.4660 (16) 1.444 (4) 1.469 (2) 1.443 (2) 1.467 (2)
C5=C6 1.394 (5) 1.3540 (16) 1.412 (4) 1.353 (2) 1.413 (2) 1.357 (2)
Cr1—C1/Cr1—Cr4 2.181 (4)/2.158 (4)   2.186 (2)/2.162 (3)   2.1809 (16)/2.1569 (16)  
Cr1—C2/Cr1—C3 2.237 (4)/2.265 (4)   2.243 (3)/2.251 (3)   2.2353 (16)/2.2477 (16)  
Cr1—C5 2.063 (4)   2.066 (3)   2.0704 (16)  
Cr1—C6 2.427 (4)   2.448 (3)   2.4428 (16)  
Fulvenec-(1-phen­yl)d 25.2 (2) 28.11 (6) 35.60 (14) 37.27 (9) 32.28 (9) 42.12 (7)
Fulvenec–(3-phen­yl)d 5.2 (2) 20.38 (6) 26.77 (14) 21.26 (9) 1.91 (10) 22.81 (7)
Fulvene–C6e 34.2 (3) 8.90 (9) 33.22 (18) 5.62 (12) 34.08 (14) 5.50 (10)
Notes: (a) Peloquin et al. (2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]); (b) Shurdha et al., 2014[Shurdha, E., Miller, H. A., Johnson, R. E., Balaich, G. J. & Iacono, S. T. (2014). Tetrahedron, 70, 5142-5147.]; (c) plane defined by atoms C1–C5; (d) plane defined by atoms of the specific phenyl ring substituent; (e) angle between the C5—C6 bond and the plane defined by the atoms C1–C5
[Figure 1]
Figure 1
The mol­ecular structure of I. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of II. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of III. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

Evidence for ππ inter­actions in the solid state is observed in I and III. In both I and III, the mol­ecules are arranged in layers in which the π system composed of the cyclo­penta­diene core (head) of the fulvene and the 3-phenyl substituent (tail) adopt a head-to-tail (Peterson et al., 1999[Peterson, M. L., Strnad, J. T., Markotan, C. A., Morales, D. V., Scaltrito, D. V. & Staley, S. W. (1999). J. Org. Chem. 64, 9067-9076.]) ππ stacked arrangement. The inter­planar contact distance is 3.420 (17) Å in I (Fig. 4[link]) and 3.330 (8) Å in and III (Fig. 5[link]), both well within the distance expected for a non-covalent ππ inter­ation (Gruber et al., 2008[Gruber, T., Seichter, W. & Weber, E. (2008). Supramol. Chem. 20, 753-760.]). In I, the centroid of each cyclo­penta­diene ring is slipped by 0.470 (17) Å end-to-end and 1.505 (17) Å edge-to-edge with respect to the opposing 3-phenyl substituent centroid. This results in a near perfect alignment of the fulvene C2 atom over the centroid of the opposing phenyl ring, with angles betwen the cyclo­penta­diene-phenyl ring normal and the C2 to phenyl ring centroid vector of only 2.05 (2)° end-to-end and 5.85 (3)° edge-to-edge. In complex III, the centroid of each cyclo­penta­diene ring is by slipped 0.286 (8) Å end-to-end and 0.761 (7) Å edge-to-edge with respect to the opposing 3-phenyl substituent centroid. Again, the C2 fulvene atom is brought into near perfect alignment over the centroid of the opposing phenyl ring, with angles betwen the cyclo­penta­diene-phenyl ring normal and the C2 to phenyl ring centroid vector of 7.67 (9)° end-to-end and 6.16 (9)° edge-to-edge.

[Figure 4]
Figure 4
The ππ stacking arrangement of I, viewed in the plane (left) and normal to the place (right) of the cyclo­penta­diene-phenyl rings. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 5]
Figure 5
The ππ stacking arrangement of III, viewed in the plane (left) and normal to the place (right) of the cyclo­penta­diene-phenyl rings. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Further non-covalent ππ inter­actions are observed in III between the pyrene units. The inter­planar contact distance is 3.494 (8) Å (Fig. 6[link]), with the centroids of the pyrene rings of π-stacked dimers slipped by 2.352 (7) Å in the end-to-end direction when viewed down the normals of the pyrene rings (Fig. 6[link]). The ring centroids remain aligned in the edge-to-edge direction. The carbon atoms of opposing pyrene rings are brought close to perfect alignment with carbon atoms in the opposing ring system, slipped by one half a ring width. This is in contrast to the stacking arrangement observed in the uncomplexed fulvene, where the overlap is inter­mediate between full carbon-to-carbon alignment and carbon-to-ring-centroid alignment (Peloquin et al. 2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]).

[Figure 6]
Figure 6
The ππ stacking arrangement of III, viewed in the plane (left) and normal to the place (right) of the pyrene rings. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.

4. Synthesis and crystallization

The fulvenes 1,3,6-tri­phenyl­fulvene, 1,3-diphenyl-6-(3-vinyl­phen­yl)fulvene, and 1,3-diphenyl-6-(1-pyrene)fulvene were prepared in accordance with literature procedures (Peloquin et al., 2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]; Godman et al., 2016[Godman, N. P., Adas, S. K., Hellwig, K. M., Ball, D. W., Balaich, G. J. & Iacono, S. T. (2016). J. Org. Chem. 81, 9630-9638.]).

(1,3,6-Tri­phenyl­fulvene)tri­carbonyl­chromium(0) (I)[link]. A solution of 1,3,6-tri­phenyl­fulvene (0.518 g, 1.69 mmol) in THF (10 mL) was added to a stirred suspension of Cr(CO)3(MeCN)3 (0.499 g, 1.93 mmol) in THF (15 mL) under N2. The solution quickly turned from pale yellow to dark red. The reaction mixture was allowed to stir at room temperature for 24 h before removal of the solvent in vacuo. The residue was dissolved in diethyl ether (100 mL), filtered under ambient conditions, and the solvent removed in vacuo. Crystals suitable for single-crystal X-ray diffraction were obtained by dissolving the crude product in benzene and layering with pentane.

{1,3-Diphenyl-6-(3-vinyl­phen­yl)fulvene}tri­carbonyl­chromium(0) (II)[link]. 1,3-Diphenyl-6-(3-vinyl­phen­yl)fulvene (0.637 g, 1.92 mmol) and Cr(CO)3(MeCN)3 (0.494 g, 1.92 mmol) were used employing the procedure outlined for the preparation of I. Crystals suitable for single-crystal X-ray diffraction were obtained by dissolving the crude product in benzene and layering with pentane.

{1,3-Diphenyl-6-(1-pyrene)fulvene}tri­carbonyl­chromium(0) (III)[link]. 1,3-Diphenyl-6-(1-pyrene)fulvene (0.603 g, 1.40 mmol) and Cr(CO)3(MeCN)3 (0.401 g, 1.54 mmol) were used employing the procedure outlined for the preparation of I. Crystals suitable for single-crystal X-ray diffraction were obtained by vapor diffusion of diethyl ether into a chloro­form solution of the crude product.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned with idealized geometry and refined using a riding model, with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). In I, an outlier (101) was omitted in the last cycles of refinement.

Table 2
Experimental details

  I II III
Crystal data
Chemical formula [Cr(C24H18)(CO)3]·0.5C6H6 [Cr(C26H20)(CO)3] [Cr(C34H22)(CO)3]
Mr 481.47 468.45 566.54
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 15.838 (5), 7.675 (2), 19.485 (6) 15.624 (4), 8.149 (2), 17.396 (4) 8.6342 (12), 9.4070 (13), 17.379 (3)
α, β, γ (°) 90, 99.335 (4), 90 90, 90.706 (3), 90 82.988 (2), 86.340 (2), 70.992 (2)
V3) 2337.2 (13) 2214.7 (10) 1324.2 (3)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.52 0.55 0.47
Crystal size (mm) 0.31 × 0.26 × 0.23 0.21 × 0.17 × 0.13 0.27 × 0.20 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SADABS, and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SADABS, and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SADABS, and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.77, 0.89 0.82, 0.93 0.88, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 38380, 4302, 2584 36033, 4086, 3183 25620, 5892, 5241
Rint 0.152 0.075 0.029
(sin θ/λ)max−1) 0.604 0.604 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.141, 1.03 0.042, 0.109, 1.08 0.036, 0.098, 1.05
No. of reflections 4302 4086 5892
No. of parameters 307 298 370
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.33 0.38, −0.40 0.48, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SADABS, and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tricarbonyl(1,3,6-triphenylfulvene)chromium(0) benzene hemisolvate (I) top
Crystal data top
[Cr(C24H18)(CO)3]·0.5C6H6F(000) = 996
Mr = 481.47Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.838 (5) ÅCell parameters from 1393 reflections
b = 7.675 (2) Åθ = 2.6–16.4°
c = 19.485 (6) ŵ = 0.52 mm1
β = 99.335 (4)°T = 100 K
V = 2337.2 (13) Å3Block, translucent red
Z = 40.31 × 0.26 × 0.23 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4302 independent reflections
Radiation source: fine focus sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.152
Detector resolution: 8.3333 pixels mm-1θmax = 25.4°, θmin = 2.6°
ω Scans scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 99
Tmin = 0.77, Tmax = 0.89l = 2323
38380 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.040P)2 + 3.0871P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4302 reflectionsΔρmax = 0.56 e Å3
307 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.55485 (4)0.83445 (9)0.67800 (3)0.0316 (2)
O10.46466 (19)1.1237 (4)0.74002 (16)0.0466 (8)
C10.4347 (2)0.6949 (5)0.6473 (2)0.0308 (10)
O30.72286 (18)0.8603 (4)0.77558 (15)0.0499 (9)
C20.4702 (2)0.7175 (5)0.5866 (2)0.0311 (10)
H20.4439340.7803090.5467670.037*
O20.61821 (18)1.1061 (4)0.58690 (16)0.0458 (8)
C30.5518 (2)0.6325 (5)0.5929 (2)0.0302 (10)
C50.4984 (2)0.6008 (5)0.6969 (2)0.0320 (10)
C40.5681 (3)0.5589 (5)0.6603 (2)0.0341 (10)
H40.6172320.4925040.6786940.041*
C60.5122 (3)0.6478 (5)0.7669 (2)0.0331 (10)
H60.4770610.7377040.7803890.040*
C190.5764 (3)0.5709 (5)0.8222 (2)0.0337 (10)
C70.3487 (2)0.7486 (5)0.6586 (2)0.0315 (10)
C240.6142 (3)0.4109 (6)0.8145 (2)0.0360 (10)
H240.5990030.3480610.7723050.043*
C80.3037 (3)0.8793 (5)0.6189 (2)0.0344 (10)
H80.3306810.9431990.5867060.041*
C230.6739 (3)0.3405 (6)0.8671 (2)0.0409 (11)
H230.6994190.2307360.8610090.049*
C90.2202 (3)0.9172 (6)0.6257 (2)0.0403 (11)
H90.1901551.0065010.5981040.048*
C220.6957 (3)0.4313 (6)0.9283 (2)0.0494 (13)
H220.7368110.3846610.9646130.059*
C100.1801 (3)0.8260 (6)0.6725 (2)0.0405 (11)
H100.1225790.8521260.6768870.049*
C210.6583 (3)0.5886 (7)0.9369 (2)0.0574 (15)
H210.6731890.6508290.9793280.069*
C110.2244 (3)0.6956 (6)0.7131 (2)0.0432 (12)
H110.1974950.6321310.7453760.052*
C200.5987 (3)0.6574 (6)0.8841 (2)0.0496 (13)
H200.5728390.7664680.8907250.059*
C120.3079 (2)0.6599 (6)0.7057 (2)0.0360 (10)
H120.3382150.5718290.7338650.043*
C130.6061 (3)0.6217 (5)0.5387 (2)0.0335 (10)
C180.5840 (3)0.7074 (5)0.4753 (2)0.0370 (11)
H180.5328630.7742720.4667650.044*
C170.6358 (3)0.6959 (6)0.4247 (2)0.0388 (11)
H170.6195170.7537940.3815260.047*
C160.7106 (3)0.6018 (6)0.4363 (2)0.0402 (11)
H160.7467570.5973960.4019730.048*
C150.7325 (3)0.5137 (6)0.4984 (2)0.0415 (11)
H150.7840150.4480310.5066780.050*
C140.6803 (3)0.5203 (5)0.5485 (2)0.0354 (10)
H140.6949400.4550920.5902070.043*
C250.5009 (3)1.0135 (6)0.7170 (2)0.0345 (10)
C260.5945 (2)1.0009 (6)0.6223 (2)0.0330 (10)
C290.9972 (4)0.6345 (9)0.5459 (4)0.084 (2)
H290.9950740.7280120.5774930.100*
C301.0533 (4)0.5006 (9)0.5636 (4)0.088 (2)
H301.0899900.5006550.6073430.105*
C280.9440 (4)0.6357 (8)0.4829 (4)0.087 (2)
H280.9052480.7296330.4711210.105*
C270.6586 (3)0.8500 (5)0.7375 (2)0.0358 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0298 (4)0.0332 (4)0.0296 (4)0.0036 (3)0.0018 (3)0.0012 (3)
O10.0386 (18)0.047 (2)0.055 (2)0.0015 (15)0.0079 (15)0.0126 (16)
C10.031 (2)0.028 (2)0.031 (2)0.0069 (18)0.0016 (18)0.0017 (19)
O30.0355 (18)0.075 (2)0.0353 (18)0.0107 (16)0.0070 (15)0.0026 (17)
C20.031 (2)0.029 (2)0.030 (2)0.0066 (18)0.0058 (18)0.0028 (18)
O20.0397 (18)0.0429 (19)0.056 (2)0.0003 (15)0.0096 (16)0.0134 (17)
C30.031 (2)0.026 (2)0.030 (2)0.0053 (18)0.0016 (18)0.0008 (18)
C50.029 (2)0.032 (2)0.032 (2)0.0052 (18)0.0029 (19)0.0067 (19)
C40.030 (2)0.035 (2)0.034 (2)0.0001 (19)0.0036 (19)0.004 (2)
C60.033 (2)0.032 (2)0.032 (2)0.0024 (19)0.0003 (18)0.003 (2)
C190.034 (2)0.036 (3)0.029 (2)0.002 (2)0.0013 (19)0.006 (2)
C70.029 (2)0.035 (2)0.028 (2)0.0055 (19)0.0046 (18)0.0023 (19)
C240.040 (3)0.037 (3)0.030 (2)0.003 (2)0.003 (2)0.004 (2)
C80.034 (2)0.033 (2)0.033 (2)0.0033 (19)0.0024 (19)0.0005 (19)
C230.044 (3)0.042 (3)0.036 (3)0.002 (2)0.004 (2)0.011 (2)
C90.039 (3)0.041 (3)0.037 (3)0.001 (2)0.007 (2)0.006 (2)
C220.046 (3)0.050 (3)0.046 (3)0.011 (2)0.010 (2)0.014 (3)
C100.029 (2)0.052 (3)0.040 (3)0.007 (2)0.002 (2)0.013 (2)
C210.086 (4)0.049 (3)0.028 (3)0.008 (3)0.016 (3)0.002 (2)
C110.031 (2)0.055 (3)0.042 (3)0.008 (2)0.001 (2)0.002 (2)
C200.074 (3)0.040 (3)0.030 (3)0.003 (3)0.007 (2)0.003 (2)
C120.031 (2)0.042 (3)0.033 (2)0.005 (2)0.0032 (18)0.004 (2)
C130.034 (2)0.029 (2)0.035 (2)0.0082 (19)0.0001 (19)0.0026 (19)
C180.035 (2)0.034 (3)0.040 (3)0.0043 (19)0.001 (2)0.000 (2)
C170.044 (3)0.042 (3)0.029 (2)0.011 (2)0.003 (2)0.001 (2)
C160.044 (3)0.040 (3)0.037 (3)0.006 (2)0.007 (2)0.009 (2)
C150.043 (3)0.030 (2)0.050 (3)0.001 (2)0.005 (2)0.004 (2)
C140.038 (3)0.030 (2)0.037 (3)0.000 (2)0.000 (2)0.000 (2)
C250.027 (2)0.041 (3)0.033 (2)0.005 (2)0.0018 (19)0.003 (2)
C260.026 (2)0.035 (3)0.036 (2)0.0001 (19)0.0020 (19)0.003 (2)
C290.047 (4)0.091 (5)0.118 (6)0.025 (4)0.029 (4)0.064 (4)
C300.060 (4)0.099 (5)0.105 (5)0.020 (4)0.020 (4)0.055 (4)
C280.050 (4)0.085 (5)0.128 (6)0.011 (3)0.020 (4)0.051 (4)
C270.039 (3)0.038 (3)0.030 (2)0.005 (2)0.006 (2)0.001 (2)
Geometric parameters (Å, º) top
Cr1—C251.845 (5)C23—C221.376 (6)
Cr1—C261.851 (5)C23—H230.9500
Cr1—C271.855 (4)C9—C101.383 (6)
Cr1—C52.063 (4)C9—H90.9500
Cr1—C42.158 (4)C22—C211.368 (7)
Cr1—C12.181 (4)C22—H220.9500
Cr1—C22.237 (4)C10—C111.392 (6)
Cr1—C32.265 (4)C10—H100.9500
Cr1—C62.427 (4)C21—C201.384 (6)
O1—C251.153 (5)C21—H210.9500
C1—C21.401 (5)C11—C121.380 (6)
C1—C51.468 (5)C11—H110.9500
C1—C71.474 (5)C20—H200.9500
O3—C271.161 (4)C12—H120.9500
C2—C31.435 (5)C13—C181.394 (6)
C2—H20.9500C13—C141.396 (5)
O2—C261.162 (5)C18—C171.384 (6)
C3—C41.416 (5)C18—H180.9500
C3—C131.467 (6)C17—C161.374 (6)
C5—C61.394 (5)C17—H170.9500
C5—C41.444 (6)C16—C151.380 (6)
C4—H40.9500C16—H160.9500
C6—C191.479 (5)C15—C141.380 (6)
C6—H60.9500C15—H150.9500
C19—C201.372 (6)C14—H140.9500
C19—C241.386 (6)C29—C301.366 (9)
C7—C121.384 (5)C29—C281.371 (9)
C7—C81.391 (5)C29—H290.9500
C24—C231.386 (5)C30—C28i1.390 (8)
C24—H240.9500C30—H300.9500
C8—C91.381 (6)C28—H280.9500
C8—H80.9500
C25—Cr1—C2687.21 (19)C5—C6—H6116.9
C25—Cr1—C2796.76 (18)C19—C6—H6116.9
C26—Cr1—C2788.37 (17)Cr1—C6—H690.7
C25—Cr1—C5109.34 (18)C20—C19—C24118.0 (4)
C26—Cr1—C5154.46 (17)C20—C19—C6119.7 (4)
C27—Cr1—C5108.07 (17)C24—C19—C6122.2 (4)
C25—Cr1—C4149.20 (18)C12—C7—C8118.2 (4)
C26—Cr1—C4122.09 (17)C12—C7—C1120.3 (4)
C27—Cr1—C493.62 (17)C8—C7—C1121.4 (4)
C5—Cr1—C439.92 (16)C19—C24—C23121.4 (4)
C25—Cr1—C192.12 (17)C19—C24—H24119.3
C26—Cr1—C1122.83 (16)C23—C24—H24119.3
C27—Cr1—C1148.00 (17)C9—C8—C7120.6 (4)
C5—Cr1—C140.35 (14)C9—C8—H8119.7
C4—Cr1—C165.06 (15)C7—C8—H8119.7
C25—Cr1—C2111.65 (16)C22—C23—C24119.3 (4)
C26—Cr1—C291.51 (16)C22—C23—H23120.4
C27—Cr1—C2151.55 (17)C24—C23—H23120.4
C5—Cr1—C264.65 (15)C8—C9—C10120.4 (4)
C4—Cr1—C262.67 (15)C8—C9—H9119.8
C1—Cr1—C236.96 (14)C10—C9—H9119.8
C25—Cr1—C3148.72 (16)C21—C22—C23120.1 (4)
C26—Cr1—C390.65 (16)C21—C22—H22120.0
C27—Cr1—C3114.39 (17)C23—C22—H22120.0
C5—Cr1—C364.99 (15)C9—C10—C11119.7 (4)
C4—Cr1—C337.23 (14)C9—C10—H10120.2
C1—Cr1—C363.20 (15)C11—C10—H10120.2
C2—Cr1—C337.17 (14)C22—C21—C20120.1 (4)
C25—Cr1—C686.85 (17)C22—C21—H21119.9
C26—Cr1—C6170.52 (16)C20—C21—H21119.9
C27—Cr1—C685.01 (16)C12—C11—C10119.2 (4)
C5—Cr1—C635.01 (14)C12—C11—H11120.4
C4—Cr1—C665.23 (15)C10—C11—H11120.4
C1—Cr1—C664.80 (14)C19—C20—C21121.1 (5)
C2—Cr1—C697.55 (14)C19—C20—H20119.4
C3—Cr1—C698.25 (14)C21—C20—H20119.4
C2—C1—C5106.8 (3)C11—C12—C7121.9 (4)
C2—C1—C7126.8 (3)C11—C12—H12119.0
C5—C1—C7126.3 (4)C7—C12—H12119.0
C2—C1—Cr173.7 (2)C18—C13—C14118.0 (4)
C5—C1—Cr165.5 (2)C18—C13—C3121.2 (4)
C7—C1—Cr1127.4 (3)C14—C13—C3120.8 (4)
C1—C2—C3110.5 (3)C17—C18—C13120.5 (4)
C1—C2—Cr169.4 (2)C17—C18—H18119.7
C3—C2—Cr172.5 (2)C13—C18—H18119.7
C1—C2—H2124.7C16—C17—C18120.7 (4)
C3—C2—H2124.7C16—C17—H17119.6
Cr1—C2—H2125.0C18—C17—H17119.6
C4—C3—C2106.7 (4)C17—C16—C15119.3 (4)
C4—C3—C13127.2 (4)C17—C16—H16120.3
C2—C3—C13126.1 (4)C15—C16—H16120.3
C4—C3—Cr167.3 (2)C16—C15—C14120.5 (4)
C2—C3—Cr170.3 (2)C16—C15—H15119.7
C13—C3—Cr1128.3 (3)C14—C15—H15119.7
C6—C5—C4121.9 (4)C15—C14—C13120.8 (4)
C6—C5—C1119.9 (4)C15—C14—H14119.6
C4—C5—C1106.5 (3)C13—C14—H14119.6
C6—C5—Cr186.9 (3)O1—C25—Cr1177.7 (4)
C4—C5—Cr173.6 (2)O2—C26—Cr1179.0 (4)
C1—C5—Cr174.2 (2)C30—C29—C28120.8 (6)
C3—C4—C5109.3 (4)C30—C29—H29119.6
C3—C4—Cr175.5 (2)C28—C29—H29119.6
C5—C4—Cr166.5 (2)C29—C30—C28i119.3 (6)
C3—C4—H4125.4C29—C30—H30120.4
C5—C4—H4125.4C28i—C30—H30120.4
Cr1—C4—H4124.1C29—C28—C30i119.9 (6)
C5—C6—C19126.2 (4)C29—C28—H28120.0
C5—C6—Cr158.1 (2)C30i—C28—H28120.0
C19—C6—Cr1121.2 (3)O3—C27—Cr1178.9 (4)
C5—C1—C2—C33.7 (4)C5—C1—C7—C1224.8 (6)
C7—C1—C2—C3174.1 (4)Cr1—C1—C7—C12109.9 (4)
Cr1—C1—C2—C361.0 (3)C2—C1—C7—C822.3 (6)
C5—C1—C2—Cr157.3 (3)C5—C1—C7—C8160.3 (4)
C7—C1—C2—Cr1124.9 (4)Cr1—C1—C7—C875.2 (5)
C1—C2—C3—C41.5 (4)C20—C19—C24—C230.9 (6)
Cr1—C2—C3—C457.6 (3)C6—C19—C24—C23179.6 (4)
C1—C2—C3—C13177.2 (4)C12—C7—C8—C90.9 (6)
Cr1—C2—C3—C13123.6 (4)C1—C7—C8—C9174.0 (4)
C1—C2—C3—Cr159.2 (3)C19—C24—C23—C220.2 (6)
C2—C1—C5—C6139.4 (4)C7—C8—C9—C100.2 (6)
C7—C1—C5—C642.8 (6)C24—C23—C22—C210.4 (7)
Cr1—C1—C5—C676.8 (3)C8—C9—C10—C110.2 (6)
C2—C1—C5—C44.4 (4)C23—C22—C21—C200.3 (8)
C7—C1—C5—C4173.4 (4)C9—C10—C11—C120.0 (6)
Cr1—C1—C5—C467.0 (3)C24—C19—C20—C211.0 (7)
C2—C1—C5—Cr162.6 (3)C6—C19—C20—C21179.7 (4)
C7—C1—C5—Cr1119.6 (4)C22—C21—C20—C190.4 (8)
C2—C3—C4—C51.4 (4)C10—C11—C12—C70.7 (6)
C13—C3—C4—C5179.9 (4)C8—C7—C12—C111.2 (6)
Cr1—C3—C4—C558.2 (3)C1—C7—C12—C11173.8 (4)
C2—C3—C4—Cr159.6 (3)C4—C3—C13—C18177.0 (4)
C13—C3—C4—Cr1121.7 (4)C2—C3—C13—C184.5 (6)
C6—C5—C4—C3139.3 (4)Cr1—C3—C13—C1888.1 (4)
C1—C5—C4—C33.6 (4)C4—C3—C13—C145.0 (6)
Cr1—C5—C4—C363.8 (3)C2—C3—C13—C14173.5 (4)
C6—C5—C4—Cr175.5 (4)Cr1—C3—C13—C1494.0 (4)
C1—C5—C4—Cr167.4 (3)C14—C13—C18—C172.0 (6)
C4—C5—C6—C1939.0 (6)C3—C13—C18—C17179.9 (4)
C1—C5—C6—C19177.2 (4)C13—C18—C17—C160.8 (6)
Cr1—C5—C6—C19107.5 (4)C18—C17—C16—C152.0 (6)
C4—C5—C6—Cr168.5 (3)C17—C16—C15—C140.2 (6)
C1—C5—C6—Cr169.7 (3)C16—C15—C14—C132.6 (6)
C5—C6—C19—C20162.9 (4)C18—C13—C14—C153.7 (6)
Cr1—C6—C19—C2091.8 (5)C3—C13—C14—C15178.3 (4)
C5—C6—C19—C2418.4 (6)C28—C29—C30—C28i0.0 (11)
Cr1—C6—C19—C2489.6 (4)C30—C29—C28—C30i0.0 (11)
C2—C1—C7—C12152.5 (4)
Symmetry code: (i) x+2, y+1, z+1.
Tricarbonyl[1,3-diphenyl-6-(3-vinylphenyl)fulvene]chromium(0) (II) top
Crystal data top
[Cr(C26H20)(CO)3]F(000) = 968
Mr = 468.45Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.624 (4) ÅCell parameters from 4824 reflections
b = 8.149 (2) Åθ = 2.3–23.2°
c = 17.396 (4) ŵ = 0.55 mm1
β = 90.706 (3)°T = 100 K
V = 2214.7 (10) Å3Rectangular prism, translucent red
Z = 40.21 × 0.17 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4086 independent reflections
Radiation source: fine focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.3333 pixels mm-1θmax = 25.4°, θmin = 2.3°
ω Scans scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 99
Tmin = 0.82, Tmax = 0.93l = 2021
36033 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0425P)2 + 2.3842P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4086 reflectionsΔρmax = 0.38 e Å3
298 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.71754 (3)0.55453 (5)0.55201 (2)0.01855 (14)
O10.77319 (13)0.2211 (2)0.49712 (11)0.0322 (5)
O20.57333 (13)0.3776 (3)0.63056 (11)0.0339 (5)
O30.81643 (13)0.5446 (2)0.70222 (11)0.0311 (5)
C10.70342 (16)0.6522 (3)0.43552 (14)0.0184 (6)
C20.62308 (17)0.6686 (3)0.46989 (14)0.0198 (6)
H20.5716080.6188150.4519820.024*
C30.63077 (17)0.7730 (3)0.53669 (14)0.0199 (6)
C40.71706 (16)0.8194 (3)0.54475 (14)0.0185 (5)
H40.7398880.8902620.5832210.022*
C50.76525 (16)0.7408 (3)0.48435 (14)0.0191 (6)
C60.84732 (16)0.6731 (3)0.49748 (14)0.0199 (6)
H60.8604470.5723760.4727760.024*
C70.72497 (16)0.5658 (3)0.36351 (14)0.0190 (6)
C80.68446 (18)0.4207 (3)0.34157 (15)0.0240 (6)
H80.6406210.3759750.3725860.029*
C90.70800 (19)0.3413 (3)0.27441 (16)0.0276 (6)
H90.680210.2421450.259850.033*
C100.77164 (18)0.4053 (3)0.22852 (15)0.0261 (6)
H100.7883440.3491850.1832540.031*
C110.81060 (18)0.5511 (3)0.24891 (15)0.0239 (6)
H110.8533050.5966410.2168830.029*
C120.78793 (17)0.6313 (3)0.31563 (14)0.0220 (6)
H120.8152190.731550.3291640.026*
C130.55946 (17)0.8350 (3)0.58454 (15)0.0209 (6)
C140.57508 (18)0.8946 (4)0.65845 (16)0.0293 (7)
H140.6303630.8822590.6810520.035*
C150.51123 (19)0.9716 (4)0.69936 (18)0.0339 (7)
H150.5228411.0114590.7497360.041*
C160.43034 (19)0.9906 (4)0.66703 (17)0.0303 (7)
H160.3868591.04610.6945030.036*
C170.41326 (18)0.9280 (3)0.59421 (16)0.0248 (6)
H170.3575930.9388880.5722010.03*
C180.47721 (17)0.8497 (3)0.55348 (16)0.0226 (6)
H180.46480.8057990.5039990.027*
C190.91401 (16)0.7478 (3)0.54682 (14)0.0188 (6)
C200.98062 (17)0.6517 (3)0.57762 (15)0.0232 (6)
H200.9812830.5366650.5687320.028*
C211.04558 (18)0.7241 (4)0.62104 (15)0.0259 (6)
H211.0909640.6585460.6410180.031*
C221.04451 (17)0.8916 (3)0.63539 (15)0.0237 (6)
H221.088860.9398760.6656040.028*
C230.97856 (17)0.9897 (3)0.60567 (14)0.0204 (6)
C240.91515 (16)0.9163 (3)0.56008 (14)0.0188 (6)
H240.8717170.9830080.5375570.023*
C250.97278 (17)1.1672 (3)0.62114 (15)0.0240 (6)
H250.9435491.2328380.5840890.029*
C261.00490 (18)1.2428 (4)0.68233 (16)0.0278 (6)
H26A1.0346181.1818130.7207790.033*
H26B0.9982521.3581040.6878010.033*
C270.75267 (17)0.3499 (3)0.51848 (15)0.0231 (6)
C280.62897 (18)0.4450 (3)0.60100 (15)0.0236 (6)
C290.77775 (17)0.5491 (3)0.64492 (16)0.0219 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0202 (2)0.0194 (2)0.0160 (2)0.00053 (18)0.00066 (16)0.00103 (17)
O10.0367 (12)0.0254 (11)0.0342 (12)0.0040 (9)0.0062 (9)0.0035 (9)
O20.0306 (12)0.0438 (13)0.0276 (11)0.0087 (10)0.0044 (9)0.0051 (10)
O30.0394 (12)0.0327 (12)0.0209 (11)0.0011 (9)0.0108 (9)0.0005 (9)
C10.0225 (14)0.0162 (13)0.0165 (13)0.0019 (11)0.0012 (10)0.0043 (10)
C20.0200 (14)0.0218 (14)0.0174 (13)0.0008 (11)0.0020 (10)0.0033 (11)
C30.0234 (14)0.0190 (13)0.0173 (13)0.0017 (11)0.0007 (11)0.0043 (11)
C40.0203 (13)0.0173 (13)0.0177 (13)0.0002 (11)0.0001 (10)0.0014 (10)
C50.0219 (14)0.0198 (14)0.0158 (12)0.0010 (11)0.0006 (10)0.0024 (10)
C60.0224 (14)0.0172 (13)0.0202 (13)0.0014 (11)0.0017 (11)0.0017 (11)
C70.0206 (13)0.0208 (14)0.0154 (13)0.0022 (11)0.0030 (10)0.0028 (10)
C80.0246 (15)0.0282 (15)0.0192 (14)0.0044 (12)0.0012 (11)0.0026 (11)
C90.0377 (17)0.0216 (15)0.0235 (14)0.0030 (13)0.0032 (12)0.0014 (12)
C100.0326 (16)0.0294 (16)0.0164 (13)0.0037 (13)0.0000 (12)0.0015 (12)
C110.0254 (15)0.0286 (15)0.0178 (14)0.0013 (12)0.0005 (11)0.0032 (11)
C120.0241 (14)0.0230 (14)0.0190 (13)0.0013 (11)0.0003 (11)0.0024 (11)
C130.0213 (14)0.0198 (14)0.0216 (14)0.0018 (11)0.0029 (11)0.0025 (11)
C140.0230 (15)0.0387 (17)0.0264 (15)0.0004 (13)0.0018 (12)0.0034 (13)
C150.0313 (17)0.0440 (19)0.0266 (16)0.0033 (14)0.0050 (13)0.0089 (14)
C160.0273 (16)0.0286 (16)0.0353 (17)0.0005 (13)0.0120 (13)0.0029 (13)
C170.0202 (14)0.0224 (14)0.0318 (16)0.0013 (11)0.0025 (12)0.0081 (12)
C180.0249 (15)0.0188 (14)0.0242 (14)0.0032 (11)0.0001 (11)0.0017 (11)
C190.0190 (13)0.0237 (14)0.0138 (12)0.0000 (11)0.0033 (10)0.0008 (11)
C200.0255 (15)0.0239 (15)0.0201 (13)0.0029 (12)0.0014 (11)0.0003 (11)
C210.0237 (15)0.0321 (16)0.0218 (14)0.0036 (12)0.0025 (11)0.0010 (12)
C220.0218 (14)0.0307 (15)0.0186 (13)0.0038 (12)0.0001 (11)0.0013 (12)
C230.0216 (14)0.0239 (14)0.0156 (12)0.0020 (11)0.0028 (11)0.0015 (11)
C240.0173 (13)0.0239 (14)0.0154 (13)0.0011 (11)0.0036 (10)0.0032 (10)
C250.0214 (14)0.0277 (15)0.0229 (14)0.0038 (12)0.0023 (11)0.0055 (12)
C260.0287 (16)0.0289 (16)0.0258 (15)0.0029 (13)0.0026 (12)0.0022 (13)
C270.0229 (15)0.0259 (16)0.0203 (14)0.0032 (12)0.0061 (11)0.0051 (12)
C280.0262 (15)0.0281 (15)0.0165 (13)0.0028 (13)0.0050 (11)0.0001 (12)
C290.0249 (14)0.0165 (13)0.0245 (15)0.0009 (11)0.0044 (12)0.0011 (11)
Geometric parameters (Å, º) top
Cr1—C271.852 (3)C10—H100.95
Cr1—C291.861 (3)C11—C121.382 (4)
Cr1—C281.862 (3)C11—H110.95
Cr1—C52.066 (3)C12—H120.95
Cr1—C42.162 (3)C13—C181.393 (4)
Cr1—C12.186 (2)C13—C141.393 (4)
Cr1—C22.243 (3)C14—C151.383 (4)
Cr1—C32.251 (3)C14—H140.95
Cr1—C62.448 (3)C15—C161.386 (4)
O1—C271.160 (3)C15—H150.95
O2—C281.154 (3)C16—C171.388 (4)
O3—C291.160 (3)C16—H160.95
C1—C21.403 (4)C17—C181.387 (4)
C1—C51.468 (4)C17—H170.95
C1—C71.480 (4)C18—H180.95
C2—C31.444 (4)C19—C241.393 (4)
C2—H20.95C19—C201.403 (4)
C3—C41.406 (4)C20—C211.389 (4)
C3—C131.487 (4)C20—H200.95
C4—C51.449 (4)C21—C221.388 (4)
C4—H40.95C21—H210.95
C5—C61.412 (4)C22—C231.398 (4)
C6—C191.473 (4)C22—H220.95
C6—H60.95C23—C241.396 (4)
C7—C81.392 (4)C23—C251.475 (4)
C7—C121.402 (4)C24—H240.95
C8—C91.389 (4)C25—C261.323 (4)
C8—H80.95C25—H250.95
C9—C101.385 (4)C26—H26A0.95
C9—H90.95C26—H26B0.95
C10—C111.379 (4)
C27—Cr1—C2995.94 (11)C19—C6—Cr1121.37 (17)
C27—Cr1—C2886.42 (12)C5—C6—H6117.7
C29—Cr1—C2887.80 (11)C19—C6—H6117.7
C27—Cr1—C5111.83 (11)Cr1—C6—H691.1
C29—Cr1—C5109.29 (11)C8—C7—C12118.7 (2)
C28—Cr1—C5152.68 (11)C8—C7—C1121.9 (2)
C27—Cr1—C4151.80 (11)C12—C7—C1119.4 (2)
C29—Cr1—C494.35 (10)C9—C8—C7120.1 (3)
C28—Cr1—C4120.20 (11)C9—C8—H8119.9
C5—Cr1—C440.01 (10)C7—C8—H8119.9
C27—Cr1—C193.61 (11)C10—C9—C8120.6 (3)
C29—Cr1—C1149.12 (11)C10—C9—H9119.7
C28—Cr1—C1122.13 (11)C8—C9—H9119.7
C5—Cr1—C140.28 (10)C11—C10—C9119.6 (3)
C4—Cr1—C165.29 (9)C11—C10—H10120.2
C27—Cr1—C2111.59 (11)C9—C10—H10120.2
C29—Cr1—C2152.22 (11)C10—C11—C12120.4 (3)
C28—Cr1—C290.19 (11)C10—C11—H11119.8
C5—Cr1—C264.64 (10)C12—C11—H11119.8
C4—Cr1—C263.07 (10)C11—C12—C7120.5 (3)
C1—Cr1—C236.92 (9)C11—C12—H12119.7
C27—Cr1—C3148.76 (11)C7—C12—H12119.7
C29—Cr1—C3114.76 (10)C18—C13—C14118.6 (2)
C28—Cr1—C389.04 (11)C18—C13—C3120.4 (2)
C5—Cr1—C364.69 (10)C14—C13—C3120.7 (2)
C4—Cr1—C337.07 (9)C15—C14—C13120.9 (3)
C1—Cr1—C363.16 (9)C15—C14—H14119.5
C2—Cr1—C337.47 (9)C13—C14—H14119.5
C27—Cr1—C689.04 (11)C14—C15—C16120.1 (3)
C29—Cr1—C686.20 (10)C14—C15—H15119.9
C28—Cr1—C6172.06 (10)C16—C15—H15119.9
C5—Cr1—C635.18 (9)C15—C16—C17119.6 (3)
C4—Cr1—C665.52 (9)C15—C16—H16120.2
C1—Cr1—C664.64 (9)C17—C16—H16120.2
C2—Cr1—C697.54 (9)C18—C17—C16120.2 (3)
C3—Cr1—C698.19 (9)C18—C17—H17119.9
C2—C1—C5107.0 (2)C16—C17—H17119.9
C2—C1—C7128.3 (2)C17—C18—C13120.6 (3)
C5—C1—C7124.7 (2)C17—C18—H18119.7
C2—C1—Cr173.76 (14)C13—C18—H18119.7
C5—C1—Cr165.45 (13)C24—C19—C20118.6 (2)
C7—C1—Cr1126.16 (18)C24—C19—C6120.8 (2)
C1—C2—C3109.5 (2)C20—C19—C6120.5 (2)
C1—C2—Cr169.33 (14)C21—C20—C19120.3 (3)
C3—C2—Cr171.58 (14)C21—C20—H20119.9
C1—C2—H2125.3C19—C20—H20119.9
C3—C2—H2125.3C22—C21—C20120.3 (3)
Cr1—C2—H2125.4C22—C21—H21119.8
C4—C3—C2108.0 (2)C20—C21—H21119.8
C4—C3—C13125.2 (2)C21—C22—C23120.4 (3)
C2—C3—C13126.5 (2)C21—C22—H22119.8
C4—C3—Cr168.02 (14)C23—C22—H22119.8
C2—C3—Cr170.95 (14)C24—C23—C22118.7 (2)
C13—C3—Cr1131.03 (18)C24—C23—C25118.6 (2)
C3—C4—C5108.4 (2)C22—C23—C25122.7 (2)
C3—C4—Cr174.91 (15)C19—C24—C23121.6 (2)
C5—C4—Cr166.40 (14)C19—C24—H24119.2
C3—C4—H4125.8C23—C24—H24119.2
C5—C4—H4125.8C26—C25—C23125.5 (3)
Cr1—C4—H4124.4C26—C25—H25117.3
C6—C5—C4122.3 (2)C23—C25—H25117.3
C6—C5—C1119.4 (2)C25—C26—H26A120.0
C4—C5—C1107.0 (2)C25—C26—H26B120.0
C6—C5—Cr187.36 (16)H26A—C26—H26B120.0
C4—C5—Cr173.58 (14)O1—C27—Cr1178.8 (2)
C1—C5—Cr174.26 (14)O2—C28—Cr1179.1 (2)
C5—C6—C19124.5 (2)O3—C29—Cr1178.9 (2)
C5—C6—Cr157.46 (14)
Tricarbonyl[1,3-diphenyl-6-(pyren-1-yl)fulvene]chromium(0) (III) top
Crystal data top
[Cr(C34H22)(CO)3]Z = 2
Mr = 566.54F(000) = 584
Triclinic, P1Dx = 1.421 Mg m3
a = 8.6342 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4070 (13) ÅCell parameters from 9972 reflections
c = 17.379 (3) Åθ = 2.3–27.2°
α = 82.988 (2)°µ = 0.47 mm1
β = 86.340 (2)°T = 100 K
γ = 70.992 (2)°Ractangular prism, translucent red
V = 1324.2 (3) Å30.27 × 0.20 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5892 independent reflections
Radiation source: fine focus sealed tube5241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 27.3°, θmin = 2.3°
ω Scans scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1212
Tmin = 0.88, Tmax = 0.95l = 2222
25620 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.9304P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5892 reflectionsΔρmax = 0.48 e Å3
370 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.79583 (3)0.56080 (3)0.17877 (2)0.01584 (9)
O11.12873 (17)0.45249 (18)0.25019 (9)0.0378 (3)
O20.94096 (18)0.74249 (16)0.05740 (8)0.0333 (3)
O30.63615 (17)0.84788 (14)0.25289 (7)0.0288 (3)
C10.79878 (19)0.33225 (18)0.16578 (9)0.0165 (3)
C20.7743 (2)0.41273 (18)0.09148 (9)0.0178 (3)
H20.8453650.3876650.0476450.021*
C30.6249 (2)0.53916 (18)0.09196 (9)0.0186 (3)
C40.55759 (19)0.53829 (18)0.16815 (9)0.0175 (3)
H40.4576640.607650.18490.021*
C50.66654 (19)0.41368 (18)0.21673 (9)0.0164 (3)
C60.70058 (19)0.43062 (18)0.29293 (9)0.0161 (3)
H60.8086330.3816870.3109280.019*
C70.9293 (2)0.18919 (18)0.18909 (9)0.0175 (3)
C80.8958 (2)0.0844 (2)0.24615 (10)0.0228 (4)
H80.7897570.1061440.2699690.027*
C91.0163 (2)0.0514 (2)0.26838 (11)0.0283 (4)
H90.9920170.1219570.3071750.034*
C101.1718 (2)0.0844 (2)0.23422 (11)0.0283 (4)
H101.254620.1766380.2501450.034*
C111.2060 (2)0.0184 (2)0.17637 (11)0.0255 (4)
H111.311970.0042790.152350.031*
C121.0856 (2)0.15373 (19)0.15384 (10)0.0211 (3)
H121.1094670.2230.1141440.025*
C130.5535 (2)0.64959 (19)0.02498 (10)0.0207 (3)
C140.6312 (2)0.6415 (2)0.04781 (10)0.0250 (4)
H140.7315330.5632230.0551930.03*
C150.5627 (2)0.7474 (2)0.10996 (11)0.0302 (4)
H150.6158910.7406080.1595850.036*
C160.4170 (3)0.8628 (2)0.09937 (12)0.0332 (5)
H160.3716360.9361230.1415160.04*
C170.3376 (3)0.8714 (2)0.02766 (12)0.0347 (5)
H170.2375920.9502150.0205030.042*
C180.4045 (2)0.7643 (2)0.03405 (11)0.0287 (4)
H180.3483240.7691080.0829580.034*
C190.57727 (19)0.52021 (18)0.34598 (9)0.0155 (3)
C200.41212 (19)0.53205 (18)0.33991 (9)0.0172 (3)
H200.3828380.4792640.3029890.021*
C210.29053 (19)0.61925 (18)0.38672 (9)0.0179 (3)
H210.17980.624840.3814340.021*
C220.32897 (19)0.69884 (18)0.44146 (9)0.0166 (3)
C230.2054 (2)0.79626 (19)0.48839 (10)0.0198 (3)
H230.0932260.8093170.4812070.024*
C240.2452 (2)0.86931 (19)0.54228 (10)0.0218 (3)
H240.1606320.9334980.5718330.026*
C250.4132 (2)0.85192 (18)0.55585 (9)0.0193 (3)
C260.4580 (2)0.9247 (2)0.61209 (10)0.0235 (4)
H260.3749250.9900610.6418480.028*
C270.6212 (2)0.9035 (2)0.62527 (10)0.0249 (4)
H270.6488940.9513820.6649390.03*
C280.7445 (2)0.8122 (2)0.58053 (10)0.0226 (4)
H280.8560090.7981610.5898790.027*
C290.7055 (2)0.74059 (18)0.52168 (9)0.0180 (3)
C300.8282 (2)0.65028 (19)0.47246 (10)0.0192 (3)
H300.9401110.6384680.4795020.023*
C310.78892 (19)0.58098 (18)0.41591 (9)0.0180 (3)
H310.8735820.5238080.3836880.022*
C320.62204 (19)0.59243 (18)0.40390 (9)0.0157 (3)
C330.49676 (19)0.68261 (17)0.45165 (9)0.0146 (3)
C340.5386 (2)0.75816 (18)0.50973 (9)0.0166 (3)
C351.0005 (2)0.4960 (2)0.22347 (10)0.0230 (4)
C360.8848 (2)0.67370 (19)0.10356 (10)0.0219 (3)
C370.7019 (2)0.73753 (19)0.22550 (9)0.0198 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01724 (14)0.01592 (14)0.01408 (14)0.00495 (10)0.00016 (10)0.00165 (10)
O10.0248 (7)0.0462 (9)0.0427 (9)0.0099 (6)0.0109 (6)0.0053 (7)
O20.0394 (8)0.0318 (7)0.0289 (7)0.0148 (6)0.0093 (6)0.0003 (6)
O30.0414 (8)0.0194 (6)0.0235 (6)0.0066 (6)0.0044 (6)0.0053 (5)
C10.0180 (7)0.0164 (8)0.0155 (7)0.0060 (6)0.0008 (6)0.0028 (6)
C20.0214 (8)0.0176 (8)0.0152 (7)0.0072 (6)0.0005 (6)0.0035 (6)
C30.0214 (8)0.0181 (8)0.0175 (8)0.0071 (6)0.0039 (6)0.0020 (6)
C40.0167 (7)0.0180 (8)0.0177 (8)0.0053 (6)0.0018 (6)0.0022 (6)
C50.0169 (7)0.0156 (7)0.0172 (8)0.0065 (6)0.0005 (6)0.0010 (6)
C60.0150 (7)0.0166 (8)0.0164 (7)0.0052 (6)0.0000 (6)0.0007 (6)
C70.0203 (8)0.0171 (8)0.0143 (7)0.0038 (6)0.0009 (6)0.0042 (6)
C80.0237 (8)0.0211 (9)0.0205 (8)0.0037 (7)0.0032 (7)0.0018 (7)
C90.0357 (10)0.0207 (9)0.0224 (9)0.0037 (8)0.0029 (8)0.0041 (7)
C100.0298 (9)0.0178 (8)0.0285 (9)0.0039 (7)0.0011 (8)0.0014 (7)
C110.0229 (8)0.0226 (9)0.0275 (9)0.0022 (7)0.0043 (7)0.0061 (7)
C120.0235 (8)0.0191 (8)0.0197 (8)0.0059 (7)0.0028 (6)0.0022 (6)
C130.0257 (8)0.0193 (8)0.0190 (8)0.0097 (7)0.0062 (7)0.0000 (6)
C140.0265 (9)0.0295 (9)0.0211 (8)0.0131 (7)0.0051 (7)0.0031 (7)
C150.0351 (10)0.0401 (11)0.0215 (9)0.0231 (9)0.0073 (8)0.0070 (8)
C160.0427 (11)0.0287 (10)0.0313 (10)0.0178 (9)0.0192 (9)0.0122 (8)
C170.0402 (11)0.0226 (9)0.0365 (11)0.0022 (8)0.0155 (9)0.0006 (8)
C180.0368 (10)0.0226 (9)0.0229 (9)0.0033 (8)0.0061 (8)0.0027 (7)
C190.0167 (7)0.0149 (7)0.0131 (7)0.0036 (6)0.0004 (6)0.0013 (6)
C200.0183 (8)0.0180 (8)0.0155 (7)0.0069 (6)0.0015 (6)0.0007 (6)
C210.0148 (7)0.0191 (8)0.0184 (8)0.0053 (6)0.0010 (6)0.0033 (6)
C220.0169 (7)0.0149 (7)0.0159 (7)0.0042 (6)0.0016 (6)0.0022 (6)
C230.0160 (7)0.0194 (8)0.0208 (8)0.0034 (6)0.0026 (6)0.0020 (6)
C240.0218 (8)0.0184 (8)0.0214 (8)0.0033 (7)0.0066 (6)0.0006 (6)
C250.0246 (8)0.0165 (8)0.0157 (8)0.0065 (6)0.0028 (6)0.0007 (6)
C260.0315 (9)0.0209 (8)0.0182 (8)0.0090 (7)0.0064 (7)0.0044 (7)
C270.0357 (10)0.0266 (9)0.0170 (8)0.0156 (8)0.0019 (7)0.0051 (7)
C280.0260 (9)0.0260 (9)0.0186 (8)0.0124 (7)0.0025 (7)0.0003 (7)
C290.0224 (8)0.0171 (8)0.0144 (7)0.0076 (6)0.0004 (6)0.0015 (6)
C300.0163 (7)0.0214 (8)0.0194 (8)0.0065 (6)0.0015 (6)0.0011 (6)
C310.0162 (7)0.0192 (8)0.0167 (8)0.0037 (6)0.0016 (6)0.0012 (6)
C320.0168 (7)0.0154 (7)0.0130 (7)0.0040 (6)0.0007 (6)0.0022 (6)
C330.0174 (7)0.0126 (7)0.0127 (7)0.0046 (6)0.0003 (6)0.0027 (6)
C340.0202 (8)0.0152 (7)0.0132 (7)0.0052 (6)0.0003 (6)0.0019 (6)
C350.0256 (9)0.0235 (9)0.0220 (8)0.0101 (7)0.0004 (7)0.0044 (7)
C360.0233 (8)0.0210 (8)0.0210 (8)0.0061 (7)0.0008 (7)0.0045 (7)
C370.0247 (8)0.0202 (8)0.0154 (8)0.0096 (7)0.0004 (6)0.0013 (6)
Geometric parameters (Å, º) top
Cr1—C371.8570 (18)C14—C151.394 (2)
Cr1—C351.8589 (18)C14—H140.95
Cr1—C361.8684 (18)C15—C161.388 (3)
Cr1—C52.0704 (16)C15—H150.95
Cr1—C42.1569 (16)C16—C171.382 (3)
Cr1—C12.1809 (16)C16—H160.95
Cr1—C22.2353 (16)C17—C181.391 (3)
Cr1—C32.2477 (16)C17—H170.95
Cr1—C62.4428 (16)C18—H180.95
O1—C351.155 (2)C19—C201.403 (2)
O2—C361.151 (2)C19—C321.418 (2)
O3—C371.153 (2)C20—C211.389 (2)
C1—C21.406 (2)C20—H200.95
C1—C51.463 (2)C21—C221.397 (2)
C1—C71.477 (2)C21—H210.95
C2—C31.443 (2)C22—C331.427 (2)
C2—H20.95C22—C231.442 (2)
C3—C41.412 (2)C23—C241.349 (3)
C3—C131.481 (2)C23—H230.95
C4—C51.454 (2)C24—C251.437 (2)
C4—H40.95C24—H240.95
C5—C61.413 (2)C25—C261.399 (2)
C6—C191.474 (2)C25—C341.425 (2)
C6—H60.95C26—C271.388 (3)
C7—C81.396 (2)C26—H260.95
C7—C121.400 (2)C27—C281.392 (3)
C8—C91.388 (2)C27—H270.95
C8—H80.95C28—C291.404 (2)
C9—C101.387 (3)C28—H280.95
C9—H90.95C29—C341.423 (2)
C10—C111.394 (3)C29—C301.432 (2)
C10—H100.95C30—C311.360 (2)
C11—C121.387 (2)C30—H300.95
C11—H110.95C31—C321.436 (2)
C12—H120.95C31—H310.95
C13—C141.392 (2)C32—C331.428 (2)
C13—C181.398 (3)C33—C341.429 (2)
C37—Cr1—C3599.16 (8)C8—C9—H9119.8
C37—Cr1—C3687.29 (7)C9—C10—C11119.63 (16)
C35—Cr1—C3686.01 (8)C9—C10—H10120.2
C37—Cr1—C5108.10 (7)C11—C10—H10120.2
C35—Cr1—C5110.57 (7)C12—C11—C10120.12 (17)
C36—Cr1—C5154.47 (7)C12—C11—H11119.9
C37—Cr1—C490.69 (7)C10—C11—H11119.9
C35—Cr1—C4150.55 (7)C11—C12—C7120.59 (16)
C36—Cr1—C4122.35 (7)C11—C12—H12119.7
C5—Cr1—C440.16 (6)C7—C12—H12119.7
C37—Cr1—C1148.22 (7)C14—C13—C18118.68 (16)
C35—Cr1—C193.85 (7)C14—C13—C3121.37 (16)
C36—Cr1—C1122.63 (7)C18—C13—C3119.95 (16)
C5—Cr1—C140.16 (6)C13—C14—C15120.46 (18)
C4—Cr1—C165.28 (6)C13—C14—H14119.8
C37—Cr1—C2147.66 (7)C15—C14—H14119.8
C35—Cr1—C2112.97 (7)C16—C15—C14120.04 (18)
C36—Cr1—C291.17 (7)C16—C15—H15120.0
C5—Cr1—C264.82 (6)C14—C15—H15120.0
C4—Cr1—C263.18 (6)C17—C16—C15120.14 (17)
C1—Cr1—C237.11 (6)C17—C16—H16119.9
C37—Cr1—C3110.15 (7)C15—C16—H16119.9
C35—Cr1—C3150.34 (7)C16—C17—C18119.82 (19)
C36—Cr1—C390.74 (7)C16—C17—H17120.1
C5—Cr1—C365.12 (6)C18—C17—H17120.1
C4—Cr1—C337.32 (6)C17—C18—C13120.82 (18)
C1—Cr1—C363.42 (6)C17—C18—H18119.6
C2—Cr1—C337.54 (6)C13—C18—H18119.6
C37—Cr1—C686.76 (6)C20—C19—C32119.24 (14)
C35—Cr1—C687.32 (7)C20—C19—C6119.21 (14)
C36—Cr1—C6170.24 (7)C32—C19—C6121.54 (14)
C5—Cr1—C635.29 (6)C21—C20—C19121.44 (15)
C4—Cr1—C665.47 (6)C21—C20—H20119.3
C1—Cr1—C664.92 (6)C19—C20—H20119.3
C2—Cr1—C697.98 (6)C20—C21—C22120.85 (15)
C3—Cr1—C698.57 (6)C20—C21—H21119.6
C2—C1—C5107.34 (14)C22—C21—H21119.6
C2—C1—C7127.29 (14)C21—C22—C33118.86 (14)
C5—C1—C7125.35 (14)C21—C22—C23122.43 (15)
C2—C1—Cr173.55 (9)C33—C22—C23118.71 (15)
C5—C1—Cr165.85 (8)C24—C23—C22121.55 (15)
C7—C1—Cr1127.16 (11)C24—C23—H23119.2
C1—C2—C3109.65 (14)C22—C23—H23119.2
C1—C2—Cr169.34 (9)C23—C24—C25121.28 (15)
C3—C2—Cr171.70 (9)C23—C24—H24119.4
C1—C2—H2125.2C25—C24—H24119.4
C3—C2—H2125.2C26—C25—C34118.90 (16)
Cr1—C2—H2125.4C26—C25—C24122.42 (16)
C4—C3—C2107.49 (14)C34—C25—C24118.68 (15)
C4—C3—C13125.94 (15)C27—C26—C25121.33 (16)
C2—C3—C13126.57 (15)C27—C26—H26119.3
C4—C3—Cr167.85 (9)C25—C26—H26119.3
C2—C3—Cr170.76 (9)C26—C27—C28120.19 (16)
C13—C3—Cr1126.97 (11)C26—C27—H27119.9
C3—C4—C5108.71 (14)C28—C27—H27119.9
C3—C4—Cr174.84 (9)C27—C28—C29120.57 (16)
C5—C4—Cr166.72 (9)C27—C28—H28119.7
C3—C4—H4125.6C29—C28—H28119.7
C5—C4—H4125.6C28—C29—C34119.36 (15)
Cr1—C4—H4124.3C28—C29—C30122.37 (15)
C6—C5—C4121.28 (14)C34—C29—C30118.27 (15)
C6—C5—C1120.01 (14)C31—C30—C29121.80 (15)
C4—C5—C1106.66 (13)C31—C30—H30119.1
C6—C5—Cr186.90 (10)C29—C30—H30119.1
C4—C5—Cr173.12 (9)C30—C31—C32121.37 (15)
C1—C5—Cr173.99 (9)C30—C31—H31119.3
C5—C6—C19123.47 (14)C32—C31—H31119.3
C5—C6—Cr157.81 (8)C19—C32—C33119.11 (14)
C19—C6—Cr1119.16 (10)C19—C32—C31122.71 (14)
C5—C6—H6118.3C33—C32—C31118.17 (14)
C19—C6—H6118.3C22—C33—C32120.32 (14)
Cr1—C6—H692.8C22—C33—C34119.51 (14)
C8—C7—C12118.75 (15)C32—C33—C34120.17 (14)
C8—C7—C1119.66 (15)C29—C34—C25119.59 (15)
C12—C7—C1121.57 (15)C29—C34—C33120.18 (14)
C9—C8—C7120.59 (16)C25—C34—C33120.23 (15)
C9—C8—H8119.7O1—C35—Cr1178.26 (16)
C7—C8—H8119.7O2—C36—Cr1179.42 (17)
C10—C9—C8120.31 (17)O3—C37—Cr1176.49 (15)
C10—C9—H9119.8
Selected geometric parameters (/%A, °) for I, II, and III and the corresponding fulvenes top
I1,3,6-triphenylfulveneaII1,3-diphenyl-6-(3-vinylphenyl)fulvenebIII1,3-diphenyl-6-(1-pyrene)fulvenea
C1—C5/C4—C51.468 (5)/1.444 (6)1.4860 (15)/1.4599 (16)1.468 (4)/1.449 (4)1.484 (2)/1.462 (2)1.463 (2)/1.454 (2)1.488 (2)/1.459 (2)
C1C2/C3C41.401 (5)/1.416 (5)1.3553 (16)/1.3603 (16)1.403 (4)/1.406 (4)1.357 (2)/1.360 (2)1.406 (2)/1.412 (2)1.353 (2)/1.363 (2)
C2—C31.435 (5)1.4660 (16)1.444 (4)1.469 (2)1.443 (2)1.467 (2)
C5C61.394 (5)1.3540 (16)1.412 (4)1.353 (2)1.413 (2)1.357 (2)
Cr1—C1/Cr1—Cr42.181 (4)/2.158 (4)2.186 (2)/2.162 (3)2.1809 (16)/2.1569 (16)
Cr1—C2/Cr1—C32.237 (4)/2.265 (4)2.243 (3)/2.251 (3)2.2353 (16)/2.2477 (16)
Cr1—C52.063 (4)2.066 (3)2.0704 (16)
Cr1—C62.427 (4)2.448 (3)2.4428 (16)
Fulvenec-(1-phenyl)d25.2 (2)28.11 (6)35.60 (14)37.27 (9)32.28 (9)42.12 (7)
Fulvenec–(3-phenyl)d5.2 (2)20.38 (6)26.77 (14)21.26 (9)1.91 (10)22.81 (7)
Fulvene–C6e34.2 (3)8.90 (9)33.22 (18)5.62 (12)34.08 (14)5.50 (10)
Notes: (a) Peloquin et al. (2012); (b) Shurdha et al., 2014; (c) 0lane defined by atoms C1–C5; (d) plane defined by the six carbon atoms of the specific phenyl ring substituent; (e) angle between the C5—C6 bond and the plane defined by the atoms C1–C5
 

References

First citationAdas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200–206.  Web of Science CrossRef Google Scholar
First citationBruker (2017). APEX3, SADABS, and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeally, A., Gleeson, B., Müller-Bunz, H., Patil, S., O'Shea, D. F. & Tacke, M. (2011). J. Organomet. Chem. 696, 1072–1083.  Web of Science CrossRef Google Scholar
First citationEbert, H., Timmermann, V., Oswald, T., Saak, W., Schmidtmann, M., Friedemann, M., Haase, D. & Beckhaus, R. (2014). Organo­metallics, 33, 1440–1452.  Web of Science CSD CrossRef CAS Google Scholar
First citationErker, G., Nolte, R., Aul, R., Wilker, S., Krueger, C. & Noe, R. (1991). J. Am. Chem. Soc. 113, 7594–7602.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGodman, N. P., Adas, S. K., Hellwig, K. M., Ball, D. W., Balaich, G. J. & Iacono, S. T. (2016). J. Org. Chem. 81, 9630–9638.  Web of Science CrossRef Google Scholar
First citationGómez-Ruiz, S., Höcher, T., Prashar, S. & Hey-Hawkins, E. (2005). Organometallics, 24, 2061–2064.  Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2008). Supramol. Chem. 20, 753–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanssen, T., Severin, R., Diekmann, M., Friedemann, M., Haase, D., Saak, W., Doye, S. & Beckhaus, R. (2010). Organometallics, 29, 1806–1817.  Web of Science CrossRef Google Scholar
First citationKonietzny, S., Finze, M. & Reiss, G. J. (2010). J. Organomet. Chem. 695, 2089–2092.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationO'Connor, J. M., Hiibner, K., Merwin, R., Gantzel, P. K., Fong, B. S. L., Adams, M. & Rheingold, A. L. (1997). J. Am. Chem. Soc. 119, 3631–3632.  Google Scholar
First citationPeloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371–6376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPeterson, M. L., Strnad, J. T., Markotan, C. A., Morales, D. V., Scaltrito, D. V. & Staley, S. W. (1999). J. Org. Chem. 64, 9067–9076.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShurdha, E., Miller, H. A., Johnson, R. E., Balaich, G. J. & Iacono, S. T. (2014). Tetrahedron, 70, 5142–5147.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds