Supporting information

The crystal structures of Z-Gly-Aib-O⁻ x ½Ca²⁺ x H₂O and Z-Gly-Aib-OH

Renate Gessmann,^a Hans Brückner^b and Kyriacos Petratos^a

^aIMBB-FoRTH, 70013 Heraklion, Greece, and ^bDepartment of Food Sciences, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35392 Giessen, Germany

Correspondance email: petratos@imbb.forth.gr

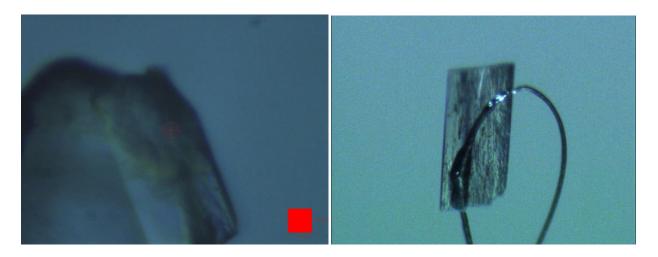


Figure **S1**. The crystals used for data collection.

Left: The complex of the dipeptide with Ca^{2+} and H_2O (Z-Gly-Aib-O⁻ x $\frac{1}{2}Ca^{2+}$ x H_2O , **I**). Right: The free form of the dipeptide (Z-Gly-Aib-OH, **II**).

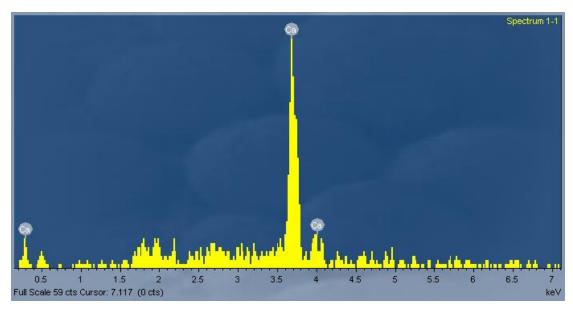


Figure S2. Energy-dispersive X-ray emission spectrum of a crystal selected from the same crystallization batch as the one that provided structure **I** showing peaks at 0.3, 3.7 and 4.0 keV, which are identified as the L, $K\alpha$ and $K\beta$ lines of calcium.