Crystal structure, electrochemical and spectroscopic investigation of *mer*-tris[2-(1*H*-imidazol-2-yl- κN^3)pyrimidine- κ^{21}] ruthenium(II) bis(hexafluoridophosphate) trihydrate

Naheed Bibi, Renan Barrach Guerra, Luis Enrique Santa Cruz Huamaní and André Luiz Barboza Formiga*

Institute of Chemistry, University of Campinas – UNICAMP, PO Box 6154, 13083-970, Campinas, SP, Brazil

Correspondence email: formiga@g.unicamp.br

doi: 10.1107/S2056989018007995

Supporting Information

Physical measurements

Elemental analyses of the complex were performed using a Perkin Elmer 2400 CHN analyser.

Electrospray ionization mass spectra (ESI-MS) were recorded with a Waters Quattro Micro API in a positive mode using a 1:1 methanol:water solution with addition of 0.10% (v/v) formic acid. Electronic absorption spectra of the complex were obtained using a quartz cuvette (1.00 cm) with a diode array HP8453 UV/Visible absorption spectrophotometer equipped with a HP89090A Peltier.

Infrared spectra were obtained with an Agilent Cary 630 FTIR spectrometer, using the Attenuated Total Reflectance (ATR) method, with a diamond cell. The spectra were recorded in 4000-400 cm⁻¹ range, with 64 scans and a resolution of 4 cm⁻¹.

For cyclic voltammetry, vitreous carbon, platinum and Ag/AgCl were employed as working, counter and a reference electrode, respectively. Solutions of the complexes (5x10⁻³ mol L⁻¹) were prepared in a pH 1 buffer solution (25 ml of 0.2 M KCl + 67 ml of 0.2 M HNO₃). The working electrode was cleaned and polished with fine alumina slurries of various granular sizes on a microcloth pad for effective removal of any previously adsorbed species. A blank was run with the buffer solution, followed by various cyclic voltammograms in different ranges with scan rates of 10, 25, 50, 100 and 200 mV s⁻¹.

For conductivity measurements, LAB1000 conductometer and a standard platinum electrode cell with a cell constant of 0.1 was used. The measurements were acquired using 9.8×10^{-4} mol L⁻¹ aqueous solutions of the complex.

Mass Spectrometry

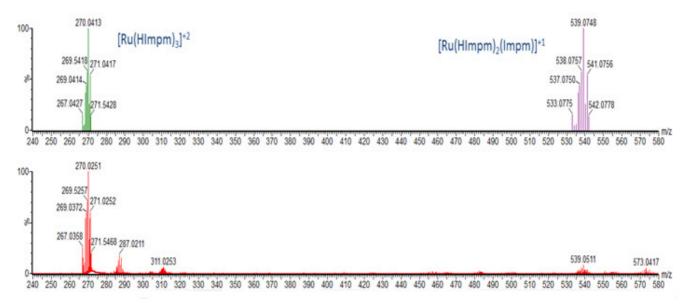


Figure S1. Simulated (above) and experimental (below) high resolution ESI-MS spectra of the complex [Ru(Himpm)₃](PF₆)₂ in methanol, obtained in positive mode.

Electronic Absorption Spectroscopy

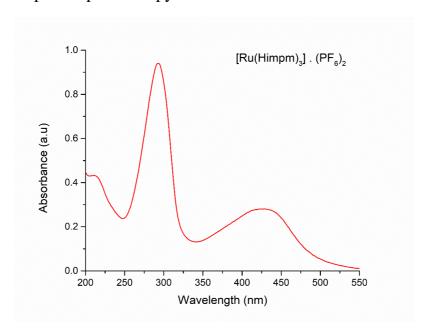


Figure S2. Electronic absorption spectrum of $[Ru(Himpm)_3](PF_6)_2$ showing absorptions over the UV-visible range in H_2O (1.9778 x 10^{-5} mol L^{-1}). Maxima: 293 nm (log $\varepsilon = 4.67$), 421 nm (log $\varepsilon = 4.14$).

Infrared Spectroscopy

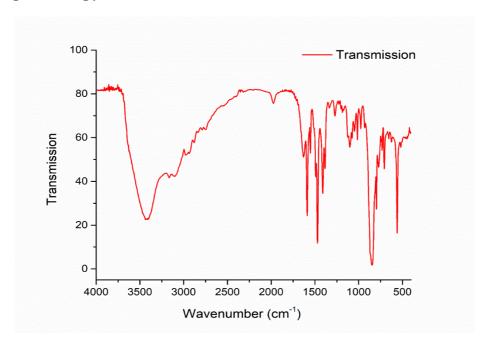


Figure S3. ATR Infrared spectrum of $[Ru(Himpm)_3](PF_6)_2$

Cyclic Voltammetry

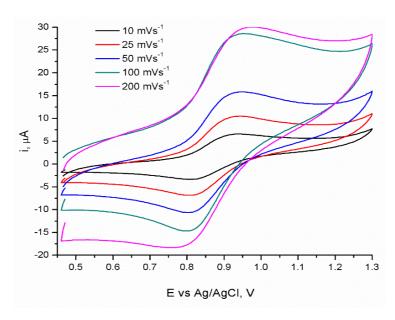


Figure S4. Cyclic voltammogram of $[Ru(Himpm)_3](PF_6)_2$ (5x10⁻³ mol L⁻¹) in buffer of pH 1 (25 ml of 0.2 M KNO₃ + 67 ml of 0.2 M HNO₃).