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(1) Effect of slice thickness on scattering cluster algorithm convergence 
 
Figure S1 shows the 000 beam intensity pendellösung for [001]-TIPS pentacene calculated 

using the scattering cluster algorithm (SCA). The electron beam is parallel to the optic axis (i.e. 

normal incidence) and has a total intensity of unity.  Results are plotted for slice thickness (∆ݖ) 

values of 0.25 Å and 0.30 Å, which are slightly larger than the 0.20 Å slice thickness used in 

Figure 3a (main text). Increasing the slice thickness causes a breakdown in the numerical 

convergence, first in the form of rapid oscillations at large thicknesses (≳1750 Å; Figure S1a), 

which on increasing ∆ݖ still further gives rise to beam intensities significantly above unity 

(Figure S1b).  
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Figure S1: 000 beam intensity pendellösung for [001]-TIPS pentacene calculated using the 

scattering cluster algorithm. The slice thickness ∆ݖ is 0.25 Å in (a) and 0.30 Å in (b). 

 

 

 

(2) Comparison of scattering cluster algorithm and Bloch wave intensities 

 
Figure S2 compares intensity pendellösung for [001]-TIPS pentacene and rubrene calculated 

using Bloch waves and SCA. The electron beam is parallel to the optic axis (i.e. normal 

incidence) and has a total intensity of unity. Pendellösung for example low and high index 

reflections, i.e. 100/010 and 500/050 for TIPS pentacene/rubrene respectively, are plotted. 

Furthermore, SCA results for two different ݃୫ୟ୶ values are plotted, i.e. 5|܏ଵ଴଴| and 10|܏ଵ଴଴| 
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for TIPS pentacene, and 5|܏଴ଵ଴| and 8|܏଴ଵ଴| for rubrene respectively. The SCA slice thickness ∆ݖ is 0.2 Å. In each case, the larger ݃୫ୟ୶ value is in close agreement with the Bloch wave 

result. 
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Figure S2: Comparison of normal beam incidence intensity pendellösung for [001]-TIPS 

pentacene and rubrene calculated using Bloch waves and scattering cluster algorithm (SCA). 

For the latter two different ݃୫ୟ୶ values are shown. TIPS pentacene intensities are plotted for 

the (a) 100 and (b) 500 reflections, while for rubrene the intensities correspond to (c) 010, 

and (d) 050 beams. 
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(3) Effect of slice thickness ∆ࢠ on R factor 

 
In Figure 4b (main text) the R factor in TIPS pentacene (normal beam incidence) was calculated 

as a function of specimen depth for a SCA slice thickness ∆ݖ of 0.2 Å and a SCA cluster size 

of 10|܏ଵ଴଴|. The R factor increased rapidly for thicknesses larger than ~1000 Å. The overall 

convergence can however be improved by using smaller values of ∆ݖ. Figure S3 shows the 

corresponding R factor plot for ∆0.10 = ݖ Å and ∆0.05 = ݖ Å respectively, where the R factor 

is now smaller than 3% for all simulated specimen depths. The two ∆ݖ values also give 

approximately the same R factor for specimen thicknesses ൑1400 Å, indicating that the 

remaining discrepancy between SCA and Bloch waves is due to the finite size of the SCA 

cluster.  

 

 
 

Figure S3: R factor plot for TIPS pentacene (normal beam incidence) as a function of 

specimen depth. The SCA cluster size is 10|܏ଵ଴଴|. Plots for ∆ݖ values of 0.10 Å and 0.05 Å 

are shown. 


