

FOUNDATIONS
ADVANCES

Volume 80 (2024)
Supporting information for article:

Realizations of crystal nets. I. (Generalized) derived graphs Gregory McColm

Appendix B. An algorithm

The following algorithm constructs a simple graph from a voltage graph of one vertex v and a self-dual edge e (and hence the derived graph has one orbit of each). We again use the notation $(\boldsymbol{A}, \boldsymbol{a})_{1}=\boldsymbol{A}$ and $(\boldsymbol{A}, \boldsymbol{a})_{2}=\boldsymbol{a}$. For a given placement g, let $(g \omega(v))_{1}=\{\boldsymbol{M}:(\boldsymbol{M}, \boldsymbol{b}) \in g \omega(v)\}$ be the corresponding orientation set. For a realization, given a vertex $\rho((v, g \omega))=\mathbf{v} \in \mathbb{R}^{d}$ of placement g, say that (\mathbf{v}, g) is a vertex placement pair, and similarly, given an edge $[\mathbf{u}, \mathbf{v}]$ of placement ${ }^{g} \gamma(e)$ that ($[\mathbf{u}, \mathbf{v}],{ }^{g} \gamma(e)$) is an edge traversal pair; when the context is clear, we will refer to either as a "pair." The input is the weight group $\omega\left(v_{0}\right)$ of the vertex v_{0} and the chosen voltage $\gamma(e)$ of the edge e.

START

COMMENT We initialize the algorithm with the reference transversal:
COMMENT For the vertex in Δ, we enter the weight group:
$\omega\left(v_{0}\right)$ is the weight group of the vertex
$\gamma(e)$ is the voltage of the edge
$V Q:=\left\{\left(\mathbf{0},(\boldsymbol{I}, \boldsymbol{0}) \omega\left(v_{0}\right)\right)\right\}$
COMMENT And the set of all vertices and their placements encountered thus far:
$P:=\left\{\left(\mathbf{0},(\boldsymbol{I}, \boldsymbol{O}) \omega\left(v_{0}\right)\right)\right\}$
COMMENT For the edge in Δ, we enter two edge traversal pairs as that vertex has one incoming edge of that edge orbit and one outgoing.
$E P:=\left\{\left(\left[\mathbf{0},(\gamma(e))_{2}\right], \gamma(e)\right),\left(\left[(\gamma(e))_{2}, \mathbf{0}\right], \gamma(e)\right)\right\}$
COMMENT And the set of lattice vectors encountered (thus far):
$L:=\varnothing$
COMMENT In this loop, we pop the top placement pair in $V Q$, expand it, and put new edges in E (although at least one edge is not new, which is not a problem since the operation is set union), and deal with new vertices
and lattice vectors (if any) appropriately
while $V Q \neq \varnothing$ do
COMMENT "Pop" the vertex placement pair at the front of the queue
$p:=$ the vertex placement pair at the front of $V Q$
$V Q:=V Q$ with p deleted
COMMENT Expand the vertex of pair p
$\mathbf{u}:=(p)_{1}$
$g:=(p)_{2}$
COMMENT Now for the vertex figure about \mathbf{u} : use $\omega\left(v_{0}\right)$ to generate the incident edges of the vertex figure by applying elements of $\omega\left(v_{0}\right)$ to the reference edge ee and its dual $\overline{e e}$.
$V F_{\text {out }}:=\left\{\left(\left[\mathbf{u},{ }^{g f} \gamma(e)(\mathbf{u})\right],{ }^{g f} \gamma(e)\right): f \in \omega\left(v_{0}\right)\right\}$
$V F_{\text {in }}:=\left\{\left(\left[{ }^{g f} \gamma(e)^{-1}(\mathbf{u}), \mathbf{u}\right],{ }^{g f} \gamma(e)^{-1}\right): f \in \omega\left(v_{0}\right)\right\}$
$E P:=E P \cup V F_{\text {out }} \cup V F_{\text {in }}$
COMMENT Generate the vertex placement pairs of the neighborhood of \mathbf{u}
NBHD $:=\left\{\left({ }^{g f} \gamma(e)(\mathbf{u}), g f \gamma(e) \omega\left(v_{0}\right)\right): f \in \omega\left(v_{0}\right)\right\}$
COMMENT We check the placement of each vertex in the neighborhood of \mathbf{u} and add that vertex to the queue if not equivalent to any extant vertex; but if it is equivalent to an extant vector, add the appropriate lattice vector.
for $\left(\mathbf{w}, h \omega\left(v_{0}\right)\right) \in$ NBHD do
for $\left(\mathbf{v}, k \omega\left(v_{0}\right)\right) \in P$ do
if $h^{-1} k \in \omega\left(v_{0}\right)$ then
COMMENT The orientation is extant, so add to lattice group

$$
L:=L \cup\{\mathbf{w}-\mathbf{v}\}
$$

else

COMMENT The orientation is new, so add vertex to queue

$$
V Q:=V Q \cup\left\{\left(\mathbf{w}, h \omega\left(v_{0}\right)\right)\right\}
$$

end if
COMMENT Now add to the vertex placement pairs
$P:=P \cup\left\{\left(\mathbf{w}, h \omega\left(v_{0}\right)\right)\right\}$
end do
end do
end do
COMMENT We obtain the edges and vertices from their placements and traversals
$E:=\left\{(e p)_{1}: e p \in E P\right\}$
$V:=\left\{(p)_{1}: p \in P\right\}$
return V, E, L
HALT
If the original group \mathcal{G} is crystallographic in \mathbb{R}^{d}, every vertex placement set $g \omega(v)$ has an orientation set. As there is a finite upper bound on the orders of d-dimensional point groups, and the number of their cosets, there are finitely many equivalence classes of orientations, and hence if Δ is finite, the algorithm will generate only finitely many vertices and halt.

