

Volume 80 (2024)

Supporting information for article:

Realizations of crystal nets. I. (Generalized) derived graphs

Gregory McColm

Appendix B. An algorithm

The following algorithm constructs a simple graph from a voltage graph of one vertex v and a self-dual edge e (and hence the derived graph has one orbit of each). We again use the notation $(\boldsymbol{A}, \boldsymbol{a})_1 = \boldsymbol{A}$ and $(\boldsymbol{A}, \boldsymbol{a})_2 = \boldsymbol{a}$. For a given placement g, let $(g\omega(v))_1 = \{\boldsymbol{M} : (\boldsymbol{M}, \boldsymbol{b}) \in g\omega(v)\}$ be the corresponding orientation set. For a realization, given a vertex $\rho((v, g\omega)) = \mathbf{v} \in \mathbb{R}^d$ of placement g, say that (\mathbf{v}, g) is a vertex placement pair, and similarly, given an edge $[\mathbf{u}, \mathbf{v}]$ of placement ${}^g\gamma(e)$ that $([\mathbf{u}, \mathbf{v}], {}^g\gamma(e))$ is an edge traversal pair; when the context is clear, we will refer to either as a "pair." The input is the weight group $\omega(v_0)$ of the vertex v_0 and the chosen voltage $\gamma(e)$ of the edge e.

START

COMMENT We initialize the algorithm with the reference transversal:

COMMENT For the vertex in Δ , we enter the weight group:

 $\omega(v_0)$ is the weight group of the vertex

 $\gamma(e)$ is the voltage of the edge

 $VQ := \{ (\boldsymbol{0}, (\boldsymbol{I}, \boldsymbol{\theta}) \boldsymbol{\omega}(v_0)) \}$

COMMENT And the set of all vertices and their placements encountered thus far: $P := \{ (\mathbf{0}, (\mathbf{I}, \mathbf{0})\omega(v_0)) \}$

COMMENT For the edge in Δ , we enter two edge traversal pairs as that vertex has one incoming edge of that edge orbit and one outgoing.

 $EP := \{ ([\mathbf{0}, (\gamma(e))_2], \gamma(e)), ([(\gamma(e))_2, \mathbf{0}], \gamma(e)) \}$

COMMENT And the set of lattice vectors encountered (thus far):

 $L := \emptyset$

COMMENT In this loop, we pop the top placement pair in VQ, expand it, and put new edges in E (although at least one edge is not new, which is not a problem since the operation is set union), and deal with new vertices while $VQ \neq \emptyset$ do

COMMENT "Pop" the vertex placement pair at the front of the queue

p := the vertex placement pair at the front of VQ

VQ := VQ with p deleted

COMMENT Expand the vertex of pair p

 $\mathbf{u} := (p)_1$

 $g := (p)_2$

COMMENT Now for the vertex figure about \mathbf{u} : use $\omega(v_0)$ to generate the incident edges of the vertex figure by applying elements of $\omega(v_0)$ to the reference edge ee and its dual \overline{ee} .

 $VF_{\text{out}} := \{([\mathbf{u}, {}^{gf}\gamma(e)(\mathbf{u})], {}^{gf}\gamma(e)) : f \in \omega(v_0)\}$

 $VF_{\text{in}} := \{ ([{}^{gf}\gamma(e)^{-1}(\mathbf{u}), \mathbf{u}], {}^{gf}\gamma(e)^{-1}) : f \in \omega(v_0) \}$

 $EP := EP \cup VF_{out} \cup VF_{in}$

COMMENT Generate the vertex placement pairs of the neighborhood of **u** NBHD := { $(g^f \gamma(e)(\mathbf{u}), gf\gamma(e)\omega(v_0)) : f \in \omega(v_0)$ }

COMMENT We check the placement of each vertex in the neighborhood of **u** and add that vertex to the queue if not equivalent to any extant vertex; but if it is equivalent to an extant vector, add the appropriate lattice vector.

for $(\mathbf{w}, h\omega(v_0)) \in \text{NBHD do}$

for $(\mathbf{v}, k\omega(v_0)) \in P$ do

if $h^{-1}k \in \omega(v_0)$ then

COMMENT The orientation is extant, so add to lattice group

 $L := L \cup \{\mathbf{w} - \mathbf{v}\}$

else

COMMENT The orientation is new, so add vertex to queue

 $VQ := VQ \cup \{(\mathbf{w}, h\omega(v_0))\}$

end if

COMMENT Now add to the vertex placement pairs

$$P := P \cup \{(\mathbf{w}, h\omega(v_0))\}$$

end do

end do

end do

COMMENT We obtain the edges and vertices from their placements and traversals f(x) = f(x) = f(x)

$$E := \{(ep)_1 : ep \in EP\}$$

 $V := \{(p)_1 : p \in P\}$

return V, E, L

HALT

If the original group \mathcal{G} is crystallographic in \mathbb{R}^d , every vertex placement set $g\omega(v)$ has an orientation set. As there is a finite upper bound on the orders of *d*-dimensional point groups, and the number of their cosets, there are finitely many equivalence classes of orientations, and hence if Δ is finite, the algorithm will generate only finitely many vertices and halt.