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SI.1 Groups, translations, and fundamental domains

SI.1.1 The group with orbifold symbol ∗246
We begin by describing the group labelled ∗246, as it is the most symmetric group of our TPMS. The group is
generated by three generators. These are reflections, and we label them R2, R4, and R6. These generators obey
the “usual” relations of a triangle group:

R2
2 = R2

4 = R2
6 = (R2R4)

6 = (R6R2)
4 = (R4R6)

2 = I, (SI.1)

where I is the identity element of the group. See Figure SI.1 for a graphical and geometric explanation of this
notation. Note that R2 is the reflection in the geodesic opposite of the ∗2 point in the fundamental domain and
similarly for R4 and R6.

SI.1.2 The Primitive surface

As the conventional unit cell of the primitive surface is identical to the primitive unit cell, the generators of the
translational group are well known and readily expressed using the generators in Equation (SI.1) [1]:

t1 = R2R4R2R4R2R6R2R4R2R4R2R6

t2 = R4R2R6R2R4R2R4R2R6R2R4R2

t3 = R2R6R2R4R2R4R2R6R2R4R2R4

τ1 = R2R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4

τ2 = R4R2R4R2R4R6R2R4R6R2R4R2R4R6R2R6

τ3 = R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4R2

(SI.2)

as is the relation they obey:

I = τ1t2τ
−1
3 t−1

1 τ2t3τ
−1
1 t−1

2 τ3t1τ
−1
2 t−1

3

The notation is graphically explained in Figure SI.1. These translations are readily associated to three lattice
vectors in a Euclidean lattice, which we denote a, b, and c:

t1 → a τ1 → c− b
t2 → b τ2 → a− c
t3 → c τ3 → b− a
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∗246 Primitive, ◦3

Diamond, ◦9 Gyroid, ◦5

Figure SI.1: Graphical/geometrical explanations of our naming conventions for the groups labelled ∗246, ◦3, ◦9, and ◦5. For
∗246, the annotated operations are reflections, whereas they are translations in the other cases.

2



SI.1.3 The Diamond surface

When compactified, the unit cell of the Diamond surface shown in Figure 1 in the main text forms a 9-torus. We
choose to represent the fundamental domain of this as the 60-gon shown in Figure SI.1. Thus, we need a total of
30 words in the group with orbifold symbol ∗246; the words presented here are reduced by GAP:

tA = R6R2R4R2R6R2R4R2R6R2R4R2R6R2R4R2

tB = R2R4R2R4R6R2R4R2R6R2R4R2R6R2R4R2R4R6R2R4R2R4

tC = R4R2R4R2R6R2R4R2R6R2R4R2R6R2R4R2R4R6

tD = R2R4R2R4R2R4R6R2R4R2R6R2R4R2R6R2R4R2R4R6R2R4

tE = R4R2R6R2R4R2R6R2R4R2R6R2R4R2R6R2

tF = R2R4R6R2R4R2R6R2R4R2R6R2R4R2R6R2R4R2R4R2

t1 = R6R2R4R6R2R4R6R2R4R6R2R4R6R2R4R6R2R4

t2 = R2R4R6R2R4R6R2R4R6R2R4R6R2R4R6R2R4R6

t3 = R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R6R2R6

t4 = R2R4R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R6R2R4R6R2

t5 = R4R2R4R2R6R2R4R6R2R4R6R2R4R6R2R4R2R6R2R4R6R2R4R2

t6 = R4R2R6R2R4R6R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R4

ta = R6R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R6R2

tb = R2R4R6R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R6R2R4R2

tc = R2R4R2R4R6R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R6R2R4R2R4R2

td = R2R4R2R4R2R4R6R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R4R6R2R4R2R4

te = R4R2R4R2R6R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R4R6R2R4

tf = R4R2R6R2R4R2R4R6R2R4R6R2R4R6R2R4R6R2R4R2R4R6

τ1 = R6R2R4R2R4R2R6R2R4R2R6R2R4R6R2R4R2R4R6R2R4R6R2R4

τ2 = R2R4R6R2R4R2R4R2R6R2R4R2R6R2R4R6R2R4R2R4R6R2R4R6

τ3 = R2R4R2R4R6R2R4R2R4R2R6R2R4R6R2R4R6R2R4R2R4R6R2R6

τ4 = R2R4R2R4R2R4R6R2R4R2R4R2R6R2R4R6R2R4R6R2R4R2R4R6R2R4R6R2

τ5 = R4R2R4R2R6R2R4R2R4R2R6R2R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4R2

τ6 = R4R2R6R2R4R2R4R2R6R2R4R2R6R2R4R6R2R4R2R4R6R2R4R6R2R4R2R4

τ7 = R4R6R2R4R2R4R2R6R2R4R2R6R2R4R6R2R4R2R4R6R2R4R6R2

τ8 = R4R2R4R6R2R4R2R4R2R6R2R4R2R6R2R4R6R2R4R2R4R6R2R6

τ9 = R4R2R4R2R4R6R2R4R2R4R2R6R2R4R6R2R4R6R2R4R2R4R6R2R4R6

τ10 = R2R4R2R4R2R6R2R4R2R4R2R6R2R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4

τ11 = R2R4R2R6R2R4R2R4R2R6R2R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4R2R4

τ12 = R2R6R2R4R2R4R2R6R2R4R2R6R2R4R6R2R4R2R4R6R2R4R6R2R4R2

These obey the following relations for the compactified surface:

I = t1τ
−1
10 t

−1
c τ3 = t2τ

−1
9 t−1

d τ4 = t3τ
−1
8 t−1

e τ5 = t4τ
−1
7 t−1

f τ6 = t5τ
−1
12 t

−1
a τ1 = t6τ

−1
11 t

−1
b τ2 = tAt

−1
4 tDt

−1
1

= tBt
−1
6 tEt

−1
3 = tCt

−1
2 tF t

−1
5 = τ7τ

−1
4 τ10τ

−1
1 = τ8τ

−1
3 τ11τ

−1
6 = τ9τ

−1
2 τ12τ

−1
5 = tat

−1
E tf t

−1
C tet

−1
D tdt

−1
B tct

−1
F tbt

−1
A

GAP confirms that the group is indeed an index-4 subgroup of the group outlined in Eqn (SI.2). As for the
primitive surface, each of these can be associated Euclidean lattice translations, a, b, and c, or 0 which we assign
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to non-trivial loops in the surface:

tA → a t1 → 0 ta → 0 τ1 → −c τ7 → a

tB → b t2 → 0 tb → 0 τ2 → b τ8 → −b
tC → c t3 → 0 tc → 0 τ3 → −a τ9 → c

tD → −a t4 → 0 td → 0 τ4 → c τ10 → −a
tE → −b t5 → 0 te → 0 τ5 → −b τ11 → b

tF → −c t6 → 0 tf → 0 τ6 → a τ12 → −c

SI.1.4 The Gyroid surface

Upon compactification, the unit cell of the Gyroid surface shown in Figure 1 in the main text resembles a 5-torus.
We choose to represent the surface of this object by the 30-gon in Figure SI.1. We need a total of 15 translations
to describe this shape:

τ1 = R2R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4

τ2 = R4R6R2R4R6R2R4R2R4R6R2R4R6R2R4R2

τ3 = R4R2R4R2R4R6R2R4R6R2R4R2R4R6R2R6

t1 = R2R6R2R4R2R4R6R2R4R6R2R4R2R4R6R2R4R2

t2 = R2R4R2R6R2R4R2R4R6R2R4R6R2R4R2R4R6R2R4R2R4R2

t3 = R2R4R2R4R2R6R2R4R2R4R6R2R4R6R2R4R2R6R2R4R2R4

t4 = R4R2R4R2R4R6R2R4R2R4R6R2R4R6R2R4R2R6R2R4

t5 = R4R2R4R6R2R4R2R4R6R2R4R6R2R4R2R6

t6 = R4R6R2R4R2R4R6R2R4R6R2R4R2R4R6R2

ta = R2R6R2R4R2R6R2R4R2R6R2R4R2R6R2R4

tb = R4R2R4R6R2R4R2R6R2R4R2R6R2R4R2R4R6R2R4R2R4R2

tc = R2R4R2R4R2R6R2R4R2R6R2R4R2R6R2R4R2R4R6R2

td = R2R4R2R4R6R2R4R2R6R2R4R2R6R2R4R2R4R6R2R4R2R4

te = R6R2R4R2R6R2R4R2R6R2R4R2R6R2R4R2

tf = R4R2R4R2R6R2R4R2R6R2R4R2R6R2R4R2R4R6

The relationships between these for the compactified Gyroid surface are readily identified from Figure SI.1:

I = t1t2t3t4t5t6 = tat
−1
4 t−1

d t−1
1 = tbt

−1
2 t−1

e t−1
5 = tct

−1
6 t−1

f t−1
3 = tdτ3teτ1tfτ2 = τ−1

1 t−1
c τ−1

2 t−1
a τ−1

3 t−1
b

As in the previous section, GAP confirms that the group is an index-2 subgroups of the group outlined in
Eqn (SI.2). These relations can once again be associated to three translations, a, b, and c in a Euclidean lattice:

τ1 → a t1 → c ta → −b
τ2 → c t2 → −b tb → −a
τ3 → b t3 → a tc → −c

t4 → −c td → −b
t5 → b te → −a
t6 → −a tf → −c
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SI.2 Crystallographic information for the net in Figure 2

The canonical equilibrium placement embedding as computed by Systre [2] using the default edge length weight
of 3 for the net in Figure 2 can be found below:

Space group P4332

Unit cell lattice (5.51748, 5.51748, 5.51748)

Unit cell angles, degrees (90.0, 90.0, 90.0)

Coordinates, node 1 (0.24683, 0.25317, 0.74683)

Coordinates, node 2 (0.00015, 0.13368, 0.37736)

Coordinates, node 3 (0.08621, 0.28466, 0.32575)

Coordinates, node 4 (0.01801, 0.01801, 0.01801)

Coordinates, edge 1 (0.08621, 0.28466, 0.32575)↔ (0.07575, 0.46534, 0.33621)

Coordinates, edge 2 (0.01801, 0.01801, 0.01801)↔ (0.16379,−0.07575,−0.03466)
Coordinates, edge 3 (0.00015, 0.13368, 0.37736)↔ (−0.12736, 0.11632, 0.24985)
Coordinates, edge 4 (0.00015, 0.13368, 0.37736)↔ (−0.00317, 0.00317, 0.50317)
Coordinates, edge 5 (0.00015, 0.13368, 0.37736)↔ (0.08621, 0.28466, 0.32575)

Shortest edge length 0.99950

Average edge length 1.00036

Longest edge length 1.00000

Shortest non-bonded distance 1.55776

Smallest angle between edges, degrees 102.33270

Average angle between edges, degrees 119.99968

Largest angle between edges, degrees 143.68166

Systre-key:
3 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 2 5 0 0 0 2 6 0 0 0 3 7 0 0 0 3 8 0 0 0 4 9 0 0 0 4 10 0 0 0 5
11 0 0 0 5 12 0 0 0 6 13 0 0 0 6 14 0 0 0 7 15 0 0 0 7 16 0 0 0 8 17 0 0 0 8 18 0 0 0 9 19 0 0
0 9 20 0 0 0 10 21 0 0 0 10 22 0 0 0 11 23 0 0 0 11 24 0 0 0 12 25 0 0 0 12 26 0 0 0 13 27 0 0
0 13 28 0 0 0 14 29 0 0 0 14 30 0 0 0 15 23 0 0 0 15 31 0 0 0 16 32 0 0 0 16 33 0 0 0 17 26 1 0
0 17 34 0 0 0 18 35 0 0 0 18 36 0 0 0 19 28 0 1 0 19 37 0 0 0 20 35 0 0 0 20 38 0 0 0 21 24 0 0
1 21 39 0 0 0 22 30 0 0 0 22 33 0 0 1 23 40 0 0 0 24 41 0 0 0 25 42 0 0 0 25 43 0 0 0 26 44 0 0
0 27 42 0 0 0 27 45 0 0 0 28 46 0 0 0 29 40 0 0 1 29 47 0 0 0 30 48 0 0 0 31 49 0 0 0 31 50 0 0
0 32 51 0 0 0 32 52 0 0 0 33 53 0 0 0 34 53 0 0 0 34 54 0 0 0 35 50 0 1 0 36 43 1 0 0 36 55 0 0
0 37 41 0 0 1 37 43 0 0 0 38 44 0 0 0 38 45 0 1 0 39 44 0 0 1 39 49 0 1 1 40 56 0 0 0 41 57 0 0
0 42 58 0 0 0 45 59 0 0 0 46 56 0 0 1 46 60 0 0 0 47 61 0 0 0 47 62 0 0 0 48 57 1 0 1 48 58 1 0
0 49 61 0 0 -1 50 63 0 0 0 51 59 1 0 0 51 63 0 0 0 52 56 1 0 0 52 57 1 0 0 53 61 0 1 -1 54 59 1
1 0 54 60 1 1 -1 55 60 1 1 0 55 62 0 1 0 58 64 0 0 0 62 64 1 0 0 63 64 1 0 0

SI.3 Group-subgroup tables and lattice graphs

The tables and graphs containing our enumerated subgroups can be found in the online supporting information
as well as from:

https://www.gitlab.com/mcpe/TPMSGroups/
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