

## FOUNDATIONS

 ADVANCESVolume 78 (2022)
Supporting information for article:

On the frequency module of the hull of a primitive substitution tiling

April Lynne D. Say-awen, Dirk Frettlöh and Ma. Louise Antonette N. De Las Peñas


Figure 1 The substitution $\omega$ with substitution factor $\sqrt{7}$. The prototiles $T_{1}, T_{2}, T_{3}$ and $T_{4}$ are regular polygons. The circular arrows indicate the orientations of symmetric tiles. The dot at the midpoint on the middle edge of $T_{2}$ is a pseudo- vertex.


Figure 2 The first four terms of the nested sequence $\left(\left(R_{\alpha} \omega\right)^{k}\left(T_{1}\right)\right)_{k \in \mathbb{N}}$ which converges to a tiling in $\mathbb{X}_{\omega}$.

(a)

(b)

Figure 3 Edge types (a) $E_{1}, E_{2}, \ldots, E_{6}$ in $\omega\left(T_{1}\right)$; and (b) $E_{7}, E_{8}$ and $E_{1}^{\prime}$ in $\omega\left(T_{2}\right)$.


Figure 4 (a) $E_{2}^{\prime} \subset \omega\left(E_{1}\right) ;(\mathbf{b})$ copies of $E_{2}^{\prime}$ in $\omega\left(E_{2}\right), \omega\left(E_{3}\right), \omega\left(E_{4}\right) ;$ (c) $E_{3}^{\prime} \subset \omega\left(E_{5}\right) ;(\mathbf{d}) E_{4}^{\prime} \subset \omega\left(E_{6}\right)$; (e) copies of $E_{1}^{\prime}$ in $\omega\left(E_{7}\right)$ and $\omega\left(E_{8}\right)$; and (f) $E_{9}$ and $E_{10}$ in $\omega\left(E_{1}^{\prime}\right)$.


Figure $5 E_{11} \subset \omega\left(E_{2}^{\prime}\right), E_{12} \subset \omega\left(E_{3}^{\prime}\right), E_{13} \subset \omega\left(E_{4}^{\prime}\right)$, and copies of $E_{1}^{\prime}$ in $\omega\left(E_{9}\right)$ and $\omega\left(E_{10}\right)$


Figure 6 Copies of $E_{1}^{\prime}$ in $\omega\left(E_{11}\right)$ and $\omega\left(E_{12}\right)$, and $E_{5}^{\prime} \subset \omega\left(E_{13}\right)$.


Figure $7 E_{14}$ and $E_{15}$ in $\omega\left(E_{5}^{\prime}\right)$.


Figure 8 Copies of $E_{5}^{\prime}$ in $\omega\left(E_{14}\right)$ and $\omega\left(E_{15}\right)$.


Figure $9 \omega\left(T_{1}\right)$ contains $\mathcal{V}_{1,1}$ and $\omega\left(E_{2}^{\prime}\right)$ contains $\mathcal{V}_{7,1}$.


Figure 10 (a) $\mathcal{V}_{1,1}$ yields the vertex star $\mathcal{V}_{1,2}$; (b) $\mathcal{V}_{1,2}$ yields the vertex star $\mathcal{V}_{1,3}$; and (c) $\mathcal{V}_{1,3}$ yields an equivalent copy of $\mathcal{V}_{1,2}$.


Figure 11 Every edge type along the 2-order super-edge of $\omega^{2}\left(E_{4}^{\prime}\right)$ or $\omega^{2}\left(E_{5}^{\prime}\right)$ is either equivalent to $E_{4}^{\prime}$ or $E_{5}^{\prime}$.


Figure 12 A portion of the partition $\mathcal{H}_{1}$ of $\mathcal{T}_{\omega}$. A patch in $\mathcal{H}_{1}$ consisting of more than one tile is enclosed by thick black edges. The partition of a patch equivalent to $\omega^{2}\left(\mathcal{P}_{7}\right)$ is shaded.


Figure 13 The complete list of non-equivalent patches in the partition $\mathcal{H}_{1}$ of $\mathcal{T}_{\omega}$.


Figure 14 The substitution $\omega^{\prime}$.

(b)

Figure 15 Portions of the partitions (a) $\mathcal{H}_{2,1}$ and (b) $\mathcal{H}_{2,2}$ of $\mathcal{T}_{\omega}$. A patch (in $\mathcal{H}_{2,1}$ or $\mathcal{H}_{2,2}$ ) consisting of more than one tile is enclosed by thick edges.


Figure 16 The complete lists of non-equivalent patches of (a) $\mathcal{H}_{2,1}$ and (b) $\mathcal{H}_{2,2}$.


Figure 17 The substitution $\omega_{1}$.


Figure 18 The substitution $\omega_{2}$.

