

Volume 78 (2022)

Supporting information for article:

On the frequency module of the hull of a primitive substitution tiling

April Lynne D. Say-awen, Dirk Frettlöh and Ma. Louise Antonette N. De Las Peñas

Figure 1 The substitution ω with substitution factor $\sqrt{7}$. The prototiles T_1, T_2, T_3 and T_4 are regular polygons. The circular arrows indicate the orientations of symmetric tiles. The dot at the midpoint on the middle edge of T_2 is a pseudo- vertex.

Figure 2 The first four terms of the nested sequence $((R_{\alpha}\omega)^{k}(T_{1}))_{k\in\mathbb{N}}$ which converges to a tiling in \mathbb{X}_{ω} .

Figure 3 Edge types (a) E_1, E_2, \dots, E_6 in $\omega(T_1)$; and (b) E_7, E_8 and E'_1 in $\omega(T_2)$.

(a)

(b)

(d) (e) (f) Figure 4 (a) $E'_2 \subset \omega(E_1)$; (b) copies of E'_2 in $\omega(E_2)$, $\omega(E_3)$, $\omega(E_4)$; (c) $E'_3 \subset \omega(E_5)$; (d) $E'_4 \subset \omega(E_6)$; (e) copies of E'_1 in $\omega(E_7)$ and $\omega(E_8)$; and (f) E_9 and E_{10} in $\omega(E'_1)$.

Figure 5 $E_{11} \subset \omega(E'_2), E_{12} \subset \omega(E'_3), E_{13} \subset \omega(E'_4)$, and copies of E'_1 in $\omega(E_9)$ and $\omega(E_{10})$

Figure 6 Copies of E'_1 in $\omega(E_{11})$ and $\omega(E_{12})$, and $E'_5 \subset \omega(E_{13})$.

Figure 7 E_{14} and E_{15} in $\omega(E'_5)$.

Figure 8 Copies of E'_5 in $\omega(E_{14})$ and $\omega(E_{15})$.

Figure 9 $\omega(T_1)$ contains $\mathcal{V}_{1,1}$ and $\omega(E'_2)$ contains $\mathcal{V}_{7,1}$.

(c) Figure 10 (a) $\mathcal{V}_{1,1}$ yields the vertex star $\mathcal{V}_{1,2}$; (b) $\mathcal{V}_{1,2}$ yields the vertex star $\mathcal{V}_{1,3}$; and (c) $\mathcal{V}_{1,3}$ yields an equivalent copy of $\mathcal{V}_{1,2}$.

Figure 11 Every edge type along the 2-order super-edge of $\omega^2(E'_4)$ or $\omega^2(E'_5)$ is either equivalent to E'_4 or E'_5 .

Figure 12 A portion of the partition \mathcal{H}_1 of \mathcal{T}_{ω} . A patch in \mathcal{H}_1 consisting of more than one tile is enclosed by thick black edges. The partition of a patch equivalent to $\omega^2(\mathcal{P}_7)$ is shaded.

Figure 13 The complete list of non-equivalent patches in the partition \mathcal{H}_1 of \mathcal{T}_{ω} .

Figure 14 The substitution ω' .

(b)

Figure 15 Portions of the partitions (a) $\mathcal{H}_{2,1}$ and (b) $\mathcal{H}_{2,2}$ of \mathcal{T}_{ω} . A patch (in $\mathcal{H}_{2,1}$ or $\mathcal{H}_{2,2}$) consisting of more than one tile is enclosed by thick edges.

Figure 16 The complete lists of non-equivalent patches of (a) $\mathcal{H}_{2,1}$ and (b) $\mathcal{H}_{2,2}$.

Figure 17 The substitution ω_1 .

Figure 18 The substitution ω_2 .