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S1. Refinement results for Ni 

The refinement results for the PXRD and the two PDF refinements are summarized in the table below. 

Table S1 Refinement results of the reciprocal- and direct-space Rietveld refinements. *The lattice 

parameter was fixed to the value found from the full-range PDF Voigt model refinement. 

 

 
PXRD 

(Rietveld refinement) 

PXRD 

(Rietveld refinement 

with fixed lattice 

param.) 

PDF Voigt 
PDF Gaussian 

(PDFgui) 

 4.90% 4.91% 8.59% 12.34% 

Scale 0.04363(6) 0.04364(6) 0.1796(2) 0.1542(2)  [Å] 3.52430(2) 3.52417* 3.52417(1) 3.52417(1)  [Å ] 0.249(1) 0.249(1) 0.265(1) 0.335(2)  [Å] --  0.614(6) 1.707(8) 

     ∗  0.00249(1) 0.00250(1) 0.00163(1) -- ∗ 0.00231(1) 0.00231(1) 0.00282(1) -- 

    0.00497(3) 

    0.0175(1) 

     sin  shift 0.0021(2) 0.0033(1)   
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S2. PDF refinement results for models with varying ranges 

Refinement results from the Gaussian (filled green triangles) and Voigt (filled red circles) models for the 

correlated motion parameter are shown below in Figure S1. 

 

S3. Approximation of the full-width half-maximum of a Voigt function 

The full-width half-maximum (FWHM),  , of a Voigt function can be approximated with (Olivero & 

Longbothum, 1977) = 0.5346 + 0.2166 +  

, where  and  are the Gaussian and Lorentzian FWHM, respectively. These are related to the ‘standard 

deviation’ and HWHM through the following = 2 2ln 2  = 2  

In the case of a linearly broadened Lorentzian peak profile function 0, , , = 0 , the FWHM of 

the resulting PDF peaks will be = 1.0692 + 0.8664  + 8 ln 2 ,   
, where ,  is the ‘intrinsic’ PDF peak width from the Debye-Waller factor and  is the PDF peak position. 

The FWHM Voigt parameters ∗, ∗, ∗ , and ∗ are simply defined as ∗ = 2 2 ln 2 ,         ∗ = 2  ∗ = 2 2 ln 2 ,          ∗ = 2  
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S4. Definition of the Thompson-Cox-Hastings pseudo-Voigt peak profile function 

The Thompson-Cox-Hasting pseudo-Voigt was first defined in 1987 (Thompson et al., 1987).The main 

proposition was to parameterize the pseudo-Voigt function  using the Gaussian and Lorentzian FWHM, 

 and  respectively, rather than the customary total FWHM parameter and mixing parameter,  and , 

respectively. The general expression for the pseudo-Voigt is , , =  , + 1 −  ,  

, =  2 11 + 4  , , = 2 ln 2 exp −4 ln 2  

Upon parameterization with  and , the following numerical approximations to  and  were used = + 2.69269 + 2.42843 + 4.45163 + 0.07842 +  = 1.36603 − 0.47719 + 0.11116  

Originally, the FWHM angular dependencies consisted of four parameters (U, V, W, and X). The modern 

formulation have two more (Z and Y), which brings the total to six parameters, given as = tan + tan + + / cos  = tan + / cos  

The Voigt description used in this study only contains four parameters ( , , , and ), which 

correspond to Z, Y, U, and X, respectively. The reason for not using W is that using the three Gaussian 

parameters U, W, and Z simultaneously will result in a redundant description due to the trigonometric 

relation − tan = 1. Applying U and Z simultaneously will thus describe a constant broadening, 

leaving the W parameter obsolete. The reason for not using V is that it has a peculiar reciprocal space 

dependency, which causes very difficult integrals to emerge during Fourier transformation. In addition, in the 

experience of the authors, the V parameter is often highly correlated with the U parameter, meaning that only 

one should be employed in a structural model. However, this may be highly dependent on the experimental 

setup used for data collection. 

The four TCH parameters Z, Y, U, and X are directly related to the FWHM Voigt parameters ∗, ∗, ∗ , and ∗ through the following equations, where the TCH parameters should be entered in radians ∗ = 2 √ ,         ∗ = 2
 

∗ = 12 √ ,          ∗ = 12  
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S5. TOPAS-Academic v6 Macros 

Implementation of a Voigt peak profile function in TOPAS is achieved by selecting a pseudo-Voigt function 

using peak type pv and applying the keyword more_accurate_Voigt (TOPAS-Academic Version 6 Technical 

Reference, September 2016, p. 43). The code used in this study is shown below. Notice that the parameters 

KG, KL, deltaG, and deltaL are defined to describe the reciprocal-space FWHM of the Gaussian and 

Lorentzian contributions even though the refinements were carried out in angular space. 

 
To model the effects of , ,  or  on the PDF, the following macros in TOPAS have been employed. 

These are heavily inspired by macros dQ_damping, dQ_lor_damping and convolute_alpha found in the 

‘pdf.inc’ file written by Dr. Phil Chater. The parameters KG, KL, deltaG, and deltaL has been defined such 

that they describe the FWHM of the peak shape function. This was chosen to ensure comparability with the 

reciprocal-space parameters as defined in the peak type above. 

 

 

peak_type pv pv_lor   0  pv_fwhm  1e-10   prm KG  0.001 prm deltaG  0.001  prm KL 0.001 prm deltaL  0.001     macro fwhm_gauss {  Sqrt((lambda/(2*Pi)*KG*180/Pi)^2/Cos(Th)^2 + (2*deltaG*180/Pi)^2*Tan(Th)^2) } macro fwhm_lor {  lambda/(2*Pi)*KL*(180/Pi)/Cos(Th) + 2*deltaL*(180/Pi)*Tan(Th) }        gauss_fwhm = fwhm_gauss;  lor_fwhm = fwhm_lor;  more_accurate_Voigt 

macro gauss_damp(KG,KGv){  #m_argu KG  I f_Prm_Eqn_Rpt(KG,  KGv,  min 0.000001 max 1.0,  del 0.0001)     scale_phase_X = Exp(-0.5/(8*Ln(2))*(CeV(KG,KGv))^2 X^2);  } 
macro lor_damp(KL,KLv) {   #m_argu KL  I f_Prm_Eqn_Rpt(KL,  KLv,  min 0.000001 max 1.0,  del 0.0001)    scale_phase_X = Exp(-0.5 CeV(KL,  KLv) X); } 
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The two latter macros have some issues concerning the way that TOPAS handles convolutions through the 

convolute_X_recal keyword. When Xo is is close to the maximum X value of the data set, the model will 

deviate significantly from the data set, as shown by the figure below. The blue line is the data set and the red 

line is the model. The data set in this example has data points up to 500 Å but the model is set to terminate at 

300 Å. The deviation becomes more severe when the model range is increased. 

 
A hotfix to this issue is to choose a longer range than necessary for the model refinement and then 

‘weighting out’ the extra range by choosing an appropriate weighting scheme. In the following example, the 

model will be refined on a range up to 300 but will only be weighted by data points up to 250 by the 

following lines of code. 

 

macro gauss_broad(deltaG,  deltaGv) {   #m_argu deltaG  I f_Prm_Eqn_Rpt(deltaG,  deltaGv,  min 0.000001 max 10 del 0.0001)    local #m_unique fwhm = CeV(deltaG,deltaGv)*Xo;      pdf_convolute = Exp(-4*Ln(2)/fwhm^2 X^2);      min_X = Min(-10*fwhm, 0)  ;       max_X = Max(10*fwhm, 0)  ;      convolute_X_recal = If(Xo,1,1)  1;  }  
macro lor_broad(deltaL,  deltaLv) {   #m_argu deltaL  I f_Prm_Eqn_Rpt(deltaL,  deltaLv,  min 0.000001 max 10 del 0.0001)    local #m_unique fwhm = CeV(deltaL,  deltaLv)*Xo;    pdf_convolute = fwhm/2/(X^2 + fwhm^2/4);    min_X = Min(-10*fwhm, 0);    max_X = Max(10*fwhm, 0);    convolute_X_recal = If(Xo,1,1) 1;  }  

macro maxX {300} weighting = If(Abs(X) < 250,  1,  0);   start_X    1.0 finish_X   maxX 
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The model using Qdamp and Qbroad was refined using the following macro, which mimics the algorithm used in 

PDFgui. The value of Qdamp was refined using the dQ_damping macro in the pdf.inc file. 

 

Supporting Information References 
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macro Biso_Qbroad_Corr1_PDFgui(Biso,  Bisov,  Qbroad,  Qbroadv,  Delta,  Deltav){  #m_argu Biso  #m_argu Qbroad  #m_argu Delta  I f_Prm_Eqn_Rpt(Biso,  Bisov,  min 0.000 max 10.0,  del 0.0001)  I f_Prm_Eqn_Rpt(Qbroad,  Qbroadv,  min -10 max 10 del 0.0001)  I f_Prm_Eqn_Rpt(Delta,  Deltav,  min -10 max 10 del 0.0001) 
  beq = CeV(Biso,Bisov)*(1 + CeV(Qbroad,Qbroadv)^2*X^2 -  CeV(Delta,Deltav)/X); }  


