

Volume 77 (2021)

Supporting information for article:

Relativistic Spacetime Crystals

Venkatraman Gopalan

Relativistic Blended Spacetime Crystals, V. Gopalan

Comments on Figure 1

```
(* Figure 1:
    Definitions of different inertial frames and observers.
        Defines a ground frame (GF) observer
        A train frame (TF) observer moving
        at speed v relative to the GF in the +x direction.
        A bird (an event) being observed by the GF and TF observers,
moving at a speed u with respect to the GF in the +x direction.
        A frame moving with the bird
        is called the bird frame (BF) or the proper frame.
        The hyperbolic angles are defined as:
        Tanh(α) = v/c
        Tanh(β) = u/c *)
```

Comments on Figure 2

```
(*Figure 2:
     2D Minkowski spacetime (MS) coordinates
         are plotted in hyperbolic geometry. The code below plots..
         the hyperbolic branch F as \xi\{\sinh[\beta], \cosh[\beta]\}, \xi=1
         the hyperbolic branch P as \xi{-Sinh[\beta],-Cosh[\beta]}, \xi=1
         the hyperbolic branch U as \xi\{Cosh[\beta],Sinh[\beta]\}, \xi=1
         the hyperbolic branch T as \xi{-Cosh[\beta],-Sinh[\beta]}, \xi=1
         the light line \mathbf{x}=\mathbf{ct} as \{\xi,\xi\}
         the light line \mathbf{x}=-\mathbf{ct} as \{\xi, -\xi\}
         the coordinates of the ct'
         axis is \{\xi * Sinh[ArcTanh[0.9]], \xi * Cosh[ArcTanh[0.9]]\}
         the coordinates of the x' axis is \{\xi * Cosh[ArcTanh[0.9]],
           ξ*Sinh[ArcTanh[0.9]]}}
         the plotting range for the hyperbolic angle \beta is -ArcTanh[0.999]<
\beta<ArcTanh[0.999], which corresponds to -0.999c<v<0.999c
         the plotting range for the spacetime interval \xi is -5 <\xi<5 *)
```

```
Clear[\beta, \xi]

ParametricPlot[{{Sinh[\beta], Cosh[\beta]},

{-Sinh[\beta], -Cosh[\beta]}, {Cosh[\beta], Sinh[\beta]}, {-Cosh[\beta], -Sinh[\beta]},

{\xi, \xi}, {\xi, -\xi}, {\xi* Sinh[ArcTanh[0.9]], \xi* Cosh[ArcTanh[0.9]]},

{\xi* Cosh[ArcTanh[0.9]], \xi* Sinh[ArcTanh[0.9]]}},

{\beta, -ArcTanh[0.999], ArcTanh[0.999]}, {\xi, -3, 3}, PlotRange \rightarrow {{-3, 3}, {-3, 3}}]
```


Figure 2

Comments on Figure 3

```
(*Figure 3:
     A plot of the renormalization factor,
\chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} from Eq. (8) as a function of u/c = \sin\phi/\cos(\theta - \phi).
     By construction, v/c = \sin\theta. Three different cases for v are explored.:
     (1) \theta=ArcSin[0], corresponding to v=0
     (2) \theta = ArcSin[0.9], corresponding to v = 0.9c
     (3) \theta = \phi, corresponding to v = u
    The range over which \phi is plotted is ArcSin[-0.99999]<\phi<ArcSin[0.99999],
which corresponds to -0.99999c < u < 0.99999c *
```

```
Clear[\theta, \phi, \xi]
\theta = ArcSin[0]
\mathsf{p1} = \mathsf{ParametricPlot}\Big[\Big\{\Big\{\mathsf{Sin}[\phi] \ / \ \mathsf{Cos}[\phi - \theta] \ , \ \sqrt{\mathsf{Abs}[\mathsf{Sec}[\theta] * \mathsf{Sec}[2 * \phi - \theta]]} \,\Big\} \,\Big\} \,,
    \{\phi, ArcSin[-0.99999], ArcSin[0.99999]\}, PlotRange \rightarrow \{\{-1, 1\}, \{0, 10\}\}\}
\theta = ArcSin[0.9]
\mathsf{p2} = \mathsf{ParametricPlot}\Big[\Big\{\Big\{\mathsf{Sin}[\phi] \ / \ \mathsf{Cos}[\phi - \theta] \ , \ \sqrt{\mathsf{Abs}[\mathsf{Sec}[\theta] * \mathsf{Sec}[2 * \phi - \theta]]} \,\Big\} \,\Big\},
    \{\phi, ArcSin[-0.99999], ArcSin[0.99999]\}, PlotRange <math>\rightarrow \{\{-1, 1\}, \{0, 10\}\}\}
p3 = ParametricPlot\left[\left\{\left\{Sin[\phi] / Cos[\phi - \theta], \sqrt{Abs[Sec[\theta] * Sec[2 * \phi - \theta]]}\right\}\right\},
    \{\phi, ArcSin[-0.99999], ArcSin[0.99999]\}, PlotRange \rightarrow \{\{-1, 1\}, \{0, 10\}\}\}
Show[p1, p2, p3, PlotTheme → "Minimal"]
```


 $Out[\ \circ\] = \ 1.11977$

Figure 3b

Out[\circ]= ϕ

Figure 3c

Figure 3a

Figure 3a, b, c

Comments on Figure 4

Code for Figure 4

```
(*Figure 4
         2D Blended Spacetime coordinates
  (x, ct') are plotted from Eq. (7) for \xi=1:
         x = \xi * \chi * Sin[\phi]
         ct'=\xi * \chi * Cos[\phi]
        The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
        The specific case of \theta=0 is assumed, which corresponds to v=0. *)
```

```
Clear[\theta, \phi, \xi]
\theta = ArcSin[0]
\xi = 1
\chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
X = \xi * \chi * Sin[\phi]
tp = \xi * \chi * Cos[\phi]
ParametricPlot[\{\{x, tp\}, \{\xi, \xi\}, \{\xi, -\xi\}\}, \{\phi, -Pi, Pi\},
  \{\xi, -5, 5\}, PlotPoints \rightarrow 50, PlotRange \rightarrow \{\{-3, 3\}, \{-3, 3\}\}\}
```

```
Out[55]= 0
Out[56]= 1
Out[57]= \sqrt{Abs[Sec[2\phi]]}
Out[58]= \sqrt{Abs[Sec[2\phi]]} Sin[\phi]
Out[59]= \sqrt{Abs[Sec[2 \phi]]} Cos[\phi]
```


Figure 4

Comments on Figure 5

```
(*Figure 5
                 2D Blended Spacetime
          coordinates (x, ct') is plotted from Eq. (7) for \xi=1:
                 x = \xi * \chi * Sin[\phi]
                  ct'=\xi * \chi * Cos[\phi]
                The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
                The specific case of \theta=ArcSin[0.9] is assumed,
       which corresponds to v=0.9c *)
       Clear [\theta, \phi, \xi]
       \theta = ArcSin[0.9]
       \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
       X = \xi * \chi * Sin[\phi]
       tp = \xi * \chi * Cos[\phi]
       ParametricPlot[\{x, tp\}, \{\xi, \xi * 0.229416\}, \{\xi, -\xi * 4.358898943540674`\}\},
        \{\phi, -Pi, Pi\}, \{\xi, -5, 5\}, PlotRange \rightarrow \{\{-5, 5\}, \{-5, 5\}\}\}
Out[90]= 1.11977
                                                                             Code for Figure 5
Out[91]= 1
Out[92]= 1.51465 \sqrt{\text{Abs}[\text{Sec}[1.11977 - 2 \phi]]}
Out[93]= 1.51465 \sqrt{\text{Abs}[\text{Sec}[1.11977 - 2 \phi]]} Sin[\phi]
```

Out[94]= 1.51465 $\sqrt{\text{Abs}[\text{Sec}[1.11977 - 2 \phi]]}$ Cos [ϕ]

Figure 5

Comment on Figure 6

```
(*Figure 6
  2D RBS coordinates (xn, tpn) from Eq. (11) are plotted for \xi=1:
   xn = \chi * Sin[\phi]/\chi
     tpn=\chi*Cos[\phi]/\chi
      The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
       The specific case of \theta=ArcSin[0] is assumed, which corresponds to v=0
   Light line x=ct is plotted as \{\xi, \xi\}
     Light line x=-ct is plotted as \{\xi, -\xi\} *
```

```
Clear[\theta, \phi, \xi, \chi, x, tp]
\theta = ArcSin[0]
\xi = 1
\chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
xn = \chi * Sin[\phi] / \chi
tpn = \chi * Cos[\phi] / \chi
ParametricPlot[\{\{xn, tpn\}, \{\xi, \xi\}, \{\xi, -\xi\}\},
  \{\phi, -Pi, Pi\}, \{\xi, -2, 2\}, PlotRange \rightarrow \{\{-2, 2\}, \{-2, 2\}\}\}
```

Out[83]= **0**

Out[84]= 1

Out[85]= $\sqrt{Abs[Sec[2\phi]]}$

Out[86]= $Sin[\phi]$

Out[87]= $\cos [\phi]$

Figure 6

Out[101]= **1.** Cos $[\phi]$

Comments for Figure 7

```
(*Figure 7
          2D RBS coordinates (xn, tpn) from Eq. (11) are plotted for \xi=1:
           xn = \chi * Sin[\phi]/\chi
             tpn=\chi*Cos[\phi]/\chi
              The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
               The specific case of \theta=ArcSin[0.9] is assumed,
       which corresponds to v=0.9c
           Light line x=ct is plotted as {\{\xi,0.229\xi\}}
             Light line x=-ct is plotted as {\{\xi,-4.3589\xi\}}
              The slopes of the light lines were found by finding the solutions to the
              equations x=ct and x=-ct using the coordinates in Eqs. (7) and (11)
                In particular, sin\phi=cos(\phi-\theta) gives one of the light lines,
       and \cos\phi = \sin(\phi - \theta) gives the other light line. *)
       Clear[\theta, \phi, \xi, \chi, x, tp]
       \theta = ArcSin[0.9]
       \xi = 1
       \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
       xn = \chi * Sin[\phi] / \chi
       tpn = \chi * Cos[\phi] / \chi
       ParametricPlot[\{xn, tpn\}, \{\xi, \xi * 0.229416\}, \{\xi, -\xi * 4.358898943540674'\}\},
        \{\phi, -Pi, Pi\}, \{\xi, -2, 2\}, PlotRange \rightarrow \{\{-2, 2\}, \{-2, 2\}\}\}
Out[97]= 1.11977
                                                                         Code for Figure 7
Out[98]= 1
Out[99]= 1.51465 \sqrt{Abs[Sec[1.11977 - 2\phi]]}
Out[100]= 1. Sin [\phi]
```


Figure 7

In[166]:=

Comments for Figure 8a

```
(*Figure 8a
  2D Blended Spacetime coordinates (x, ct') is plotted from Eq. (7) for \xi=1:
         x = \xi * \chi * Sin[\phi]
         ct' = \xi * \chi * Cos[\phi]
       The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
       The specific case of \theta=ArcSin[0.99999] is assumed,
which corresponds to v=0.99999c, that is v \rightarrow c infinitesimally closely. *)
```

```
Clear[\theta, \phi, \xi]
\theta = ArcSin[0.99999]
\chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
X = \xi * \chi * Sin[\phi]
tp = \xi * \chi * Cos[\phi]
ParametricPlot[\{\{x, tp\}\}, \{\phi, -Pi, Pi\}, PlotRange \rightarrow \{\{-40, 40\}, \{-40, 40\}\}\}]
```

Out[167]= 1.56632

Code for Figure 8a

Out[170]= 14.9535
$$\sqrt{\mathsf{Abs}[\mathsf{Sec}[1.56632-2\,\phi]]}$$
 $\mathsf{Sin}[\phi]$

Out[171]= 14.9535
$$\sqrt{\text{Abs}[\text{Sec}[1.56632 - 2 \phi]]}$$
 $\cos[\phi]$

Figure 8a

Comments for Figure 8b

```
(*Figure 8b
  2D RBS coordinates (xn, tpn) from Eq. (11) are plotted for \xi=1:
   xn = \chi * Sin[\phi]/\chi
     tpn=\chi*Cos[\phi]/\chi
      The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
       The specific case of \theta=ArcSin[0.99999] is assumed,
which corresponds to v=0.99999c, that is v \rightarrow c infinitesimally closely.
    Light line x=ct approaches infinitesimally close to the x-axis
     Light line x' = -ct' approaches infinitesimally close to the ct'-axis *)
```

```
Clear[\theta, \phi, \xi, \chi, x, tp]
\theta = ArcSin[0.99999]
\chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
xn = \chi * Sin[\phi] / \chi
tpn = \chi * Cos[\phi] / \chi
ParametricPlot[\{xn, tpn\}\}, \{\phi, -Pi, Pi\}, PlotRange \rightarrow \{\{-2, 2\}, \{-2, 2\}\}\}]
```

```
Out[132]= 1.56632
Out[133]= 1
Out[134]= 14.9535 \sqrt{\text{Abs}[\text{Sec}[1.56632 - 2 \phi]]}
Out[135]= 1. Sin [\phi]
Out[136]= 1. \cos [\phi]
```

Code for Figure 8b

Figure 8b

Comments for Figure 9a

```
(*Figure 9a
           2D Blended Spacetime coordinates (x, ct') is plotted from Eq. (7) for \xi=1:
                   x = \xi * \chi * Sin[\phi]
                   ct' = \xi * \chi * Cos[\phi]
                The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
                The specific case of \theta = \phi is assumed, which corresponds to v = u *)
        Clear [\theta, \phi, \xi]
        \theta = \phi
        \xi = 1
        \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
        X = \xi * \chi * Sin[\phi]
        tp = \xi * \chi * Cos[\phi]
        ParametricPlot[\{x, tp\}\}, \{\phi, -Pi, Pi\}, PlotRange \rightarrow \{\{-5, 5\}, \{-1.5, 1.5\}\}]
Out[188]= \phi
                                                                               Code for Figure 9a
Out[189]= 1
Out[190]= \mathsf{Abs}[\mathsf{Sec}[\phi]]
Out[191]= Abs[Sec[\phi]] Sin[\phi]
Out[192]= Abs[Sec[\phi]] Cos[\phi]
                                                                                                   Figure 9a
                                                                 1.5 _
                                                                 0.5
Out[193]= -
                                                                -0.5
```

-1.5 [[]

Comments for Figure 9b

```
(*Figure 9b
  2D RBS coordinates (xn, tpn) from Eq. (11) are plotted for \xi=1:
    xn = \chi * Sin[\phi]/\chi
     tpn=\chi*Cos[\phi]/\chi
      The factor \chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2*\phi - \theta]]} is substituted from Eq (8)
        The specific case of \theta = \phi is assumed,
which corresponds to v=u, that is, the TF and the BF are coincident.
    Light lines x=+/-ct are parallel to the x-axis. *)
```

```
Clear[\theta, \phi, \xi, \chi, x, tp]
\theta = \phi
\xi = 1
\chi = \sqrt{\text{Abs}[\text{Sec}[\theta] * \text{Sec}[2 * \phi - \theta]]}
xn = \chi * Sin[\phi] / \chi
tpn = \chi * Cos[\phi] / \chi
ParametricPlot[\{\{xn, tpn\}\}, \{\phi, -Pi, Pi\}, PlotRange \rightarrow \{\{-2, 2\}, \{-2, 2\}\}\}]
```

```
Out[195]= \phi
Out[196]= 1
Out[197]= Abs [Sec [\phi]]
Out[198]= Sin[\phi]
Out[199]= \cos [\phi]
```

Code for Figure 9b

Figure 9b