

Volume 77 (2021)

Supporting information for article:

On symmetry breaking of dual polyhedra of non-crystallographic group *H*3

Mariia Myronova

Figure 14. The polytope $\mathcal{V}_{H_3}(1,0,0)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(0,0,c')$ are depicted by black color.

Figure 18. The polytope $\mathcal{V}_{H_3}(1,0,0)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(0,0,c')$ are depicted by black color.

Figure 21. The polytope $\mathcal{V}_{H_3}(1,0,0)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(0,0,c')$ are depicted by black color.

Figure 33. The polytope $\mathcal{V}_{H_3}(1,0,0)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(0,0,c')$ are depicted by black color.

Figure 34. The polytope $\mathcal{V}_{H_3}(0,0,1)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(a',0,0)$ are depicted by black color.

Figure 35. The polytope $\mathcal{V}_{H_3}(0, 1, 0)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(a', 0, 0)$ and $O_{H_3}(0, 0, c')$ are depicted by green and black colors, respectively.

Figure 36. The polytope $\mathcal{V}_{H_3}(1, 1, 0)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(a', 0, 0)$ and $O_{H_3}(0, 0, c')$ are depicted by green and black colors, respectively.

Figure 37. The polytope $\mathcal{V}_{H_3}(0, 1, 1)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(a', 0, 0)$ and $O_{H_3}(0, 0, c')$ are depicted by green and black colors, respectively.

Figure 38. The polytope $\mathcal{V}_{H_3}(1,0,1)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(a',0,0)$, $O_{H_3}(0,b',0)$ and $O_{H_3}(0,0,c')$ are depicted by orange, black and green colors, respectively.

Figure 39. The polytope $\mathcal{V}_{H_3}(1,1,1)$ is oriented in the direction of the simple roots α_1 , α_2 and α_3 . The points of the orbits $O_{H_3}(a',0,0)$, $O_{H_3}(0,b',0)$ and $O_{H_3}(0,0,c')$ are depicted by orange, black and green colors, respectively.

	l	$\mathcal{V}_{H_3}(1,0,0)$				
	Or	<i>Orbit</i> $c_3(0, 0, 1)$				
G'	$\overline{\mu}$	$R^2(\mu')$	$N[R^2(\mu')]$	N_{f}		
	$(\frac{\tau}{2}+1,0,3\tau-4)$	$36.2 - 21.7\tau$	1.056	5		
TT	$(\frac{3\tau}{2} - 2, 0, 3 - \tau)$	$14.5 - 7.2\tau$	2.764	5		
Π_2	$(2 - \frac{3\tau}{2}, 3 - \tau, 0)$	$14.5 - 7.2\tau$	2.764	5		
	$\left(-\frac{\tau}{2}-1, 3\tau-4, 0\right)$	$36.2-21.7\tau$	1.056	5		
	$(0, 2 + \tau, 3\tau - 4)$	$12.5 - 7.5\tau$	0.365	2		
	$(3 - \tau, 2\tau - 1, 3 - \tau)$	$10-5\tau$	1.910	4		
	$(2\tau - 1, 3 - \tau, 0)$	2.5	2.5	2		
$A_1 \times A_1$	$(3\tau - 4, 0, 2\tau - 1)$	$15-7.5\tau$	2.865	4		
	$(2\tau - 1, \tau - 3, 0)$	2.5	2.5	2		
	$(3 - \tau, 1 - 2\tau, 3 - \tau)$	$10-5\tau$	1.910	4		
	$(0, -2 - \tau, 3\tau - 4)$	$12.5-7.5\tau$	0.365	2		
	$(0, 0, 3\tau - \frac{3}{2})$	0	0	1		
A_2	$(0, 3 - \tau, \frac{5}{2})$	$6.7 - 3.3\tau$	1.273	3		
	$(3-\tau, 3\tau-4, \tau-\frac{1}{2})$	$13.3-6.7\tau$	2.546	6		
	$(3\tau - 4, 3 - \tau, \frac{1}{2} - \tau)$	$13.3-6.7\tau$	2.546	6		
	$(3-\tau, 0, -\frac{5}{2})$	$6.7 - 3.3\tau$	2.764	3		

Table 11. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(1,0,0)$.

	$\mathcal{V}_{\mathrm{ex}}(0,0,1)$				
	${-\!$				
		$Orbit \ c_1(1,0,0)$			
G'	μ	$R^2(\mu')$	$N[R^2(\mu')]$	N_p	
	$(1+\frac{\tau}{2},0,0)$	0	0	1	
Ц	$(\frac{\tau}{2}, 1, 0)$	1.45	1.45	5	
Π_2	$(-\frac{\tau}{2}, 0, 1)$	1.45	1.45	5	
	$(-1 - \frac{\tau}{2}, 0, 0)$	0	0	1	
	$(1, \tau + 1, 0)$	0.5	0.5	2	
	(0, au, au)	$0.5+0.5\tau$	1.309	2	
$A_1 \times A_1$	(au, 0, 1)	$1 + 0.5\tau$	1.809	4	
	$(0, -\tau, \tau)$	$0.5+0.5\tau$	1.309	2	
	$(1, -\tau - 1, 0)$	0.5	0.5	2	
	$(1, 0, \tau + \frac{1}{2})$	0.667	0.667	3	
A_2	$(0, au, rac{1}{2})$	$0.7+0.7\tau$	1.735	3	
	$(\tau, 0, -\frac{1}{2})$	$0.7+0.7\tau$	1.735	3	
	$(0,1,-\tau-\tfrac{1}{2})$	0.667	0.667	3	

Table 12. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(0,0,1)$.

	$\mathcal{V}_{H_3}(0,1,0)$			
	<i>Orbit</i> $c_3(0,0,1)$			
G'	μ	$R^2(\mu')$	$N[R^2(\mu')]$	N_p
	$(\frac{\tau}{2} + \frac{1}{2}, 0, \tau - 1)$	$2.9 - 1.5\tau$	0.553	5
И	$\left(\tfrac{\tau}{2} - \tfrac{1}{2}, 0, 1\right)$	1.45	1.45	5
11_2	$\left(\tfrac{\tau}{2} - \tfrac{1}{2}, 1, 0\right)$	1.45	1.45	5
	$\left(-\frac{\tau}{2} - \frac{1}{2}, \tau - 1, 0\right)$	$2.9-1.5\tau$	0.553	5
	$(0, 1 + \tau, \tau - 1)$	$1 - 0.5\tau$	0.191	2
	(1, au, 1)	1	1	4
	(au, 1, 0)	$0.5+0.5\tau$	1.309	2
$A_1 \times A_1$	$(\tau - 1, 0, \tau)$	1.5	1.5	4
	$(\tau, -1, 0)$	$0.5+0.5\tau$	1.309	2
	$(1,-\tau,1)$	1	1	4
	$(0, -1-\tau, \tau-1)$	$1 - 0.5\tau$	1.309	2
	$(0, 0, \frac{3}{2}\tau)$	0	0	3
	$(0, 1, \tau + \frac{1}{2})$	0.667	0.667	3
A_2	$(1, \tau - 1, \frac{\tau}{2})$	1.333	1.333	6
	$(\tau-1,1,-\tfrac{\tau}{2})$	1.333	1.333	6
	$(1, 0, -\frac{\tau}{2} - 1)$	0.667	0.667	3
	$(0,0,-\tfrac{3}{2}\tau)$	0	0	3

Table 13. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(0, 1, 0)$.

	$\mathcal{V}_{H_3}(z)$	1, 1, 0)		
	Orbit c	$_{3}(0,0,1)$		
G'	μ	$R^2(\mu')$	$N[R^2(\mu')]$	N_p
	$\frac{1}{6}(3\tau + 4, 0, 10\tau - 12)$	$9.8-5.6\tau$	0.702	5
Ц	$\frac{1}{6}(5\tau - 6, 0, 10 - 6\tau)$	$4.2-1.45\tau$	1.839	5
Π_2	$\frac{1}{6}(6-5\tau,10-6\tau,0)$	$4.2-1.45\tau$	1.839	5
	$\frac{1}{6}(-3\tau - 4, 10\tau - 12, 0)$	$9.8-5.6\tau$	0.702	5
	$\frac{1}{3}(0,3\tau+4,5\tau-6)$	$3.4 - 1.9\tau$	0.243	2
	$\frac{1}{3}(5-\tau, 4\tau-3, 5-\tau)$	$2.9 - \tau$	1.271	4
	$\frac{1}{3}(4\tau - 1, 5 - \tau, 0)$	$0.9+0.4\tau$	1.664	2
$A_1 \times A_1$	$\frac{1}{3}(5\tau - 6, 0, 4\tau - 1)$	$4.3 - 1.5\tau$	1.906	4
	$\frac{1}{3}(4\tau - 1, \tau - 5, 0)$	$0.9+0.4\tau$	1.664	2
	$\frac{1}{3}(5-\tau, 3-4\tau, 5-\tau)$	$2.9 - \tau$	1.271	4
	$\frac{1}{3}(0, -3\tau - 4, 5\tau - 6)$	$3.4 - 1.9\tau$	0.243	2
	$\frac{1}{6}(0,0,12\tau-3)$	0	0	3
	$\frac{1}{6}(0, 10 - 2\tau, 2\tau + 9)$	$1.9-0.7\tau$	0.847	3
4.0	$\frac{1}{6}(10-2\tau,10\tau-12,4\tau-1)$	$3.9 - 1.3\tau$	1.695	6
<i>P</i> 1 2	$\frac{1}{6}(10\tau - 12, 10 - 2\tau, 1 - 4\tau)$	$3.9 - 1.3\tau$	1.695	6
	$\frac{1}{6}(10-2\tau,0,-2\tau-9)$	$1.9-0.7\tau$	0.847	3
	$\frac{1}{6}(0,0,3-12\tau)$	0	0	3

Table 14. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(1,1,0)$.

	$\mathcal{V}_{H_3}(0$, 1, 1)		
	<i>Orbit</i> $c_3(0, 0, 1)$			
G'	μ	$R^2(\mu')$	$N[R^2(\mu')]$	N_p
	$\frac{1}{11}(\frac{13\tau}{2}+3,0,8-\tau)$	$0.8 - 0.2\tau$	0.487	5
Ц	$\frac{1}{11}(4-\frac{\tau}{2},0,7\tau-1)$	$0.6+0.4\tau$	1.275	5
Π_2	$\frac{1}{11}(\frac{\tau}{2}-4,0,7\tau-1)$	$0.6+0.4\tau$	1.275	5
	$\frac{1}{11}\left(-\frac{13\tau}{2}-3,0,8-\tau\right)$	$0.8 - 0.2\tau$	0.487	5
	$\frac{1}{11}(13\tau + 6, 0, 8 - \tau)$	$0.3 - 0.1\tau$	0.168	4
	$\frac{1}{11}(6\tau + 7, 7\tau - 1, 7\tau - 1)$	$0.4 + 0.3\tau$	0.881	4
	$\frac{1}{11}(7\tau + 1, 6\tau + 7, 0)$	$0.4+0.5\tau$	1.154	2
$A_1 \times A_1$	$\frac{1}{11}(0, 8-\tau, 7+6\tau)$	$0.6+0.4\tau$	1.322	2
	$\frac{1}{11}(-7\tau - 1, 6\tau + 7, 0)$	$0.4+0.5\tau$	1.154	2
	$\frac{1}{11}(-6\tau - 7, 7\tau - 1, 7\tau - 1)$	$0.4 + 0.3\tau$	0.881	4
	$\left(\frac{1}{11}(-13\tau - 6, 0, 8 - \tau)\right)$	$0.3 - 0.1\tau$	0.168	4
	$\frac{9}{22}(0,0,18\tau+21)$	0	0	1
	$\frac{1}{11}(0,7\tau-1,10+8\tau)$	$0.3 + 0.2\tau$	0.588	3
A_2	$\frac{1}{11}(7\tau - 1, 8 - \tau, 12\tau + 14)$	$0.6+0.4\tau$	1.175	6
	$\frac{1}{11}(7\tau - 1, 8 - \tau, -12\tau - 14)$	$0.6+0.4\tau$	1.175	6
	$\frac{1}{11}(0,7\tau-1,-10-8\tau)$	$0.3+0.2\tau$	0.588	3
	$\frac{9}{22}(0,0,-18\tau-21)$	0	0	1

Table 15. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(0, 1, 1)$.

	$\mathcal{V}_{H_3}(1$.,0,1)		
	Orbit cz	2(0, 1, 0)		
G'	μ	$R^2(\mu')$	$N[R^2(\mu')]$	N_p
	$\frac{3}{2}(1,2-\tau,0)$	$16.3 - 9.8\tau$	0.475	5
	$\frac{3}{2}(\tau-1,0,\tau-1)$	$6.5 - 3.3\tau$	1.244	5
H_2	$\frac{3}{2}(0,2-\tau,2-\tau)$	$29-16.8\tau$	1.719	10
	$\frac{3}{2}(1-\tau,\tau-1,0)$	$6.5 - 3.3\tau$	1.244	5
	$\frac{3}{2}(-1,0,2-\tau)$	$16.3-9.8\tau$	0.475	5
	$\frac{3}{2}(0,2,0)$	0	0	1
	$\frac{3}{2}(2-\tau,\tau,\tau-1)$	$7.9-4.5\tau$	0.594	4
	$\frac{3}{2}(1,1,2-\tau)$	$6.8 - 3.4\tau$	1.289	4
	$\frac{3}{2}(\tau - 1, \tau - 1, 1)$	$3.4 - 1.1\tau$	1.555	4
$A \sim A$	$\frac{3}{2}(2\tau - 2, 0, 0)$	$9-4.5\tau$	1.719	2
$A_1 \wedge A_1$	$\frac{3}{2}(0,0,2\tau-2)$	$9-4.5\tau$	1.719	2
	$\frac{3}{2}(\tau - 1, 1 - \tau, 1)$	$3.4 - 1.1\tau$	1.555	4
	$\frac{3}{2}(1,-1,2-\tau)$	$6.8 - 3.4\tau$	1.289	4
	$\frac{3}{2}(2-\tau,-\tau,-2)$	$7.9 - 4.5\tau$	0.594	4
	$\frac{3}{2}(0,-2,0)$	0	0	2
	$\tfrac{3}{2}(0,2-\tau,\tau)$	$7.5-4.5\tau$	0.219	3
	$\frac{3}{2}(2-\tau,\tau-1,1)$	$6-3\tau$	1.459	6
	$\frac{3}{2}(1,0,\tau-1)$	1.5	1.5	3
A_2	$\frac{3}{2}(\tau - 1, \tau - 1, 0)$	$9-4.5\tau$	1.719	6
	$\frac{3}{2}(0,1,1-\tau)$	1.5	1.5	3
	$\frac{3}{2}(\tau - 1, 2 - \tau, -1)$	$6-3\tau$	1.459	6
	$\frac{3}{2}(2-\tau,0,-\tau)$	$7.5 - 4.5\tau$	0.219	3
	<i>Orbit</i> $c_3(0, 0, 1)$			
	$\frac{3}{22}(2+5\tau,0,8-2\tau)$	$1.8-0.8\tau$	0.612	5
H_{*}	$\frac{3}{22}(4-\tau,0,6\tau-2)$	$1.1 - 0.3\tau$	1.599	5
112	$\frac{3}{22}(\tau - 4, 6\tau - 2, 0)$	$1.1 - 0.3\tau$	1.599	5
	$\frac{3}{22}(-2-5\tau, 8-2\tau, 0)$	$1.8-0.8\tau$	0.612	5
	$\frac{3}{11}(0,2+5\tau,4-\tau)$	$0.6 - 0.3\tau$	0.211	2
	$\frac{3}{11}(3\tau - 1, 3 + 2\tau, 3\tau - 1)$	$0.7 + 0.2\tau$	1.105	4
	$\frac{3}{11}(3+2\tau,3\tau-1,0)$	$0.5+0.6\tau$	1.446	2
$A_1 \times A_1$	$\frac{3}{11}(4-\tau,0,3+2\tau)$	$1.1 + 0.3\tau$	1.657	4
	$\frac{3}{11}(3+2\tau,1-3\tau,0)$	$0.5+0.6\tau$	1.446	2
	$\frac{3}{11}(3\tau - 1, -3 - 2\tau, 3\tau - 1)$	$0.7 + 0.2\tau$	1.105	4
	$\frac{3}{11}(0, -2 - 5\tau, 4 - \tau)$	$0.6 - 0.3\tau$	0.211	2
	$\frac{3}{22}(0,0,9+6\tau)$	0	0	1
	$\frac{3}{22}(0,6\tau-2,1+8\tau)$	$0.5+0.1\tau$	0.737	3
Δ	$\frac{3}{22}(6\tau - 2, 8 - 2\tau, 3 + 2\tau)$	$1 + 0.3\tau$	1.473	6
12	$\frac{3}{22}(8-2\tau,-2+6\tau,-3-2\tau)$	$1 + 0.3\tau$	1.473	6
	$\frac{3}{22}(6\tau - 2, 0, -1 - 8\tau)$	$0.5+0.1\tau$	0.737	3
	$\frac{3}{22}(0,0,-9-6\tau)$	0	0	1

Table 16. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(1,0,1)$.

	$\mathcal{V}_{H_3}(1,1,1)$			
	<i>Orbit</i> $c_2(0, 1, 0)$			
G'	μ	$R^2(\mu')$	$N[R^2(\mu')]$	N_{i}
	$\frac{1}{22}(10\tau + 15, 20 - 5\tau, 0)$	$1.3 - 0.5\tau$	0.424	5
	$\frac{1}{22}(15\tau - 5, 0, 15\tau - 5)$	$0.8 + 0.2\tau$	1.110	5
H_2	$\frac{1}{22}(0,20\tau-5,20\tau-5)$	$2.5-0.6\tau$	1.535	10
	$\frac{1}{22}(5-15\tau,15\tau-5,0)$	$0.8 + 0.2\tau$	1.110	5
	$\frac{1}{22}(-10\tau - 15, 0, 20 - 5\tau)$	$1.3-0.5\tau$	0.424	5
	$\frac{1}{22}(0, 30+20\tau, 0)$	0	0	1
	$\frac{1}{22}(20-5\tau,25\tau+10,15\tau-5)$	$0.7 + 0.1\tau$	0.530	4
	$\frac{1}{22}(10\tau + 15, 10\tau + 15, 20 - 5\tau)$	$0.8 + 0.2\tau$	1.151	4
	$\frac{1}{22}(15\tau - 5, 15\tau - 5, 10\tau + 15)$	$0.6 + 0.5\tau$	1.388	4
4 4	$\frac{1}{22}(30\tau - 10, 0, 0)$	$1 + 0.3\tau$	1.535	2
$A_1 \times A_1$	$\frac{1}{22}(0,0,30\tau-10)$	$1 + 0.3\tau$	1.535	2
	$\frac{1}{22}(15\tau - 5, 5 - 15\tau, 10\tau + 15)$	$0.6 + 0.5\tau$	1.388	4
	$\frac{1}{22}(10\tau + 15, 10\tau - 15, 20 - 5\tau)$	$0.8 + 0.2\tau$	1.151	4
	$\frac{1}{22}(20-5\tau,-10-25\tau,15\tau-5)$	$0.7 + 0.1\tau$	0.530	4
	$\frac{1}{22}(0, -30 - 20\tau, 0)$	0	0	1
	$\frac{1}{22}(0, 20 - 5\tau, 25\tau + 10)$	$0.6 - 0.2\tau$	0.195	3
	$\frac{1}{22}(20-5\tau,15\tau-5,10\tau+15)$	$0.7 + 0.2\tau$	1.023	6
	$\frac{1}{122}(10\tau + 15, 0, 15\tau - 5)$	$0.4 + 0.6\tau$	1.339	3
A_2	$\frac{1}{22}(15\tau-5,15\tau-5,0)$	$1 + 0.3\tau$	1.535	6
-	$\frac{1}{120}(0, 10\tau + 15, 5 - 15\tau)$	$0.4 + 0.6\tau$	1.339	3
	$\frac{1}{22}(15\tau - 5, 20 - 5\tau, -10\tau - 15)$	$0.7 + 0.2\tau$	1.023	6
	$\frac{1}{22}(20-5\tau,0,-25\tau-10)$	$0.6 - 0.2\tau$	0.195	3
	$Orbit c_3$	(0, 0, 1)		
	$\frac{1}{6}(10-\tau,0,10\tau-10)$	$8-4\tau$	1.536	5
TT	$\frac{1}{6}(5\tau, 0, 20 - 10\tau)$	$20.1 - 12.1\tau$	0.587	5
H_2	$\frac{1}{6}(5\tau - 10, 10\tau - 10, 0)$	$8-4\tau$	1.536	5
	$\frac{1}{6}(-5\tau, 20-10\tau, 0)$	$20.1-12.1\tau$	0.587	5
	$\frac{1}{3}(0,5\tau,10-5\tau)$	$6.9 - 4.2\tau$	0.203	2
	$\frac{1}{3}(5\tau - 5, 5, 5\tau - 5)$	$5.6 - 2.8\tau$	1.061	4
	$\frac{1}{3}(5,5\tau-5,0)$	1.389	1.389	2
$A_1 \times A_1$	$\frac{1}{3}(10-5\tau,0,5)$	$8.3 - 4.2\tau$	1.592	4
	$\frac{1}{3}(5,5-5\tau,0)$	1.389	1.389	2
	$\frac{1}{3}(5\tau-5,-5,5\tau-5)$	$5.6 - 2.8\tau$	1.061	4
	$\frac{1}{3}(0, -5\tau, 10 - 5\tau)$	$6.9-4.2\tau$	0.203	2
	$\frac{1}{6}(0,0,15)$	0	0	1
	$\frac{1}{6}(0, 10\tau - 10, 10\tau - 5)$	$3.7-1.9\tau$	0.707	3
Δ	$\frac{1}{6}(10\tau - 10, 20\tau - 10, 5)$	$7.4-3.7\tau$	1.415	6
<i>r</i> 1 ₂	$\frac{1}{6}(20-10\tau,10\tau-10,-5)$	$7.4 - 3.7\tau$	1.415	6
	$\frac{1}{6}(10\tau - 10, 0, 5 - 10\tau)$	$3.7 - 1.9\tau$	0.707	3
	$\frac{1}{2}(0, 0, -15)$	0	0	1

Table 17. The orbit decomposition of the polytope $\mathcal{V}_{H_3}(1,1,1)$.