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Fig. S1. Action of inversion on a helical (a) and cycloidal (b) magnetic modulation described both with the modulation
vector k = [0, 0, ki]. The positions of magnetic ions from left column (numbered as 1, 2, 3 located at x3 = −1, 0, 1) and their
magnetic moments are transformed by inversion giving magnetic ions shown in the right column: (1 → 1, 2 → 2, 3 → 3).
The angle between the magnetic moment direction and a reference direction in the spin rotation plane are shown (see
text).

1 Examples of inversion, 2-fold axis and mirror

In this subsection the action of three representative symmetry operations: inversion, 2-fold rotation and mirror on a
helical and cycloidal modulated ordering in the general elliptical case are explained in detail as given below in Figs. S1,
S2 and S3, respectively. Each visualisation is followed by a calculation using eq. (6) from the main text. Let us con-
sider a vertical column of magnetic ions located in adjacent unit cells along the modulation vector k = [0, 0, ki], i.e.
with coordinates x3 = −1, 0, 1.... For the helical ordering, drawn in Fig. S1a, the magnetic ions can be described as
[M0x cos(2πkix3),M0y sin(2πkix3), 0], with the normal vector n = [0, 0, 1]. We assume in general that M0x 6= M0y. For
the cycliodal ordering, shown in Fig. S1b one has [0,M0y cos(2πkix3),M0z sin(2πkix3)] with the normal vector n = [1, 0, 0].
We assume in general that M0y 6= M0z.

The left column of magnetic ions transforms to the right column of magnetic ions but the ions in both columns belong
to the same Wyckoff position. Such transformations between ions located in different ’columns’ are not covered by the
local symmetry analysis in [1, 2, 3].

1.1 Inversion, 1̄

The magnetic ions with their magnetic moments from the left column (numbered 1, 2, 3) are transformed by inversion
(eq. (6) from the main text) giving the magnetic ions in the right column (1 → 1, 2 → 2, 3 → 3) as drawn in Fig. S1.
Please note that det 1̄ = −1. The angles between the magnetic moment direction and an arbitrarily chosen reference
’zero’ direction in the spin rotation plane are shown in Figs. S1a,b. For the left column these angles are: −ε, 0, ε for
ions no. 1, 2, 3 while going up along ki, i.e. the magnetic modulation has positive chirality. The resulting angles for the
transformed magnetic moments in the right column are: ε, 0,−ε, while going up along ki, i.e. negative chirality. The
conclusion from Fig. S1 is that inversion changes the chirality of the magnetic modulation so a helical or cycloidal ordering
with one chirality is not possible with centrosymmetric magnetic superspace groups.

With a rational part of the modulation vector i.e. kr = (k1, k2, 0) the contribution to the scalar product is the same
for all atoms in one column because the atomic coordinates x1 and x2 are the same in the whole column. It means that
the rational part of the modulation vector introduces a phase shift of 2(k1x1 +k2x2) for inversion but it does not influence
the change of chirality.

Instead of drawing the transformation by inversion one can also calculate the transformed magnetic moment com-
ponents for atoms in the right column using eq. (6) from the main text. One gets [Mx,My,Mz] → [Mx,My,Mz] and
the modulation vector ki → −ki, so x4 → −x4. When we start from [cos(2πx4), sin(2πx4)], i.e. positive chirality, we
can obtain the same chirality when the transformed modulation is either unchanged or with both signs changed i.e.
[− cos(2πx4),− sin(2πx4)]. If only one component changes its sign: [− cos(2πx4), sin(2πx4)] or [cos(2πx4),− sin(2πx4)]
then the transformed modulation has negative chirality. For the helical ordering shown in Fig. S1a one gets:
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Fig. S2. Action of 2-fold rotation around [001] axis on a helical (a) and cycloidal (b) magnetic modulation described both
with the modulation vector k = [0, 0, ki]. The positions of magnetic ions from left column (numbered as 1, 2, 3 located
at x3 = −1, 0, 1) and their magnetic moments are transformed by 2001 giving magnetic ions shown in the right column:
(1 → 1, 2 → 2, 3 → 3). The angle between the magnetic moment direction and a reference direction in the spin rotation
plane, i.e. −ε, 0, ε are shown (see text). The angle between the magnetic moment of the ”spin0” ion (no. 2 left column in
both panels) and the rotation axis direction is denoted as δ.

M0x cos (2πx4)
M0y sin (2πx4)

0

→
M0x cos (−2πx4)
M0y sin (−2πx4)

0

 =

 M0x cos (2πx4)
−M0y sin (2πx4)

0

 , (1)

while for the cycloidal ordering shown in Fig. S1b: 0
M0y cos (2πx4)
M0z sin (2πx4)

→
 0
M0y cos (−2πx4)
M0z sin (−2πx4)

 =

 0
M0y cos (2πx4)
−M0z sin (2πx4)

 , (2)

i.e. both orderings change chirality due to inversion.

1.2 2-fold rotation, 2001

Next one can consider the action of 2-fold rotation along the axis parallel to the irrational component of the modulation
vector ki as shown in Figs. S2a,b for helical and cycloidal modulations respectively. The magnetic ions (numbered 1, 2, 3
are located at z3 = −1, 0, 1) shown in the left column have the same magnetic moments arrangement as in the previous
example, see Figs. S1. The transformation by 2-fold rotation around [001], denoted as 2001 (eq. (6) from the main text)
gives the magnetic ions in the right column, (1→ 1, 2→ 2, 3→ 3), see Fig. S2. The angle between the magnetic moment
of the atom no. 2 (left column in panel b) and the rotation axis is denoted as δ. For the helical ordering the resulting
angles for the transformed magnetic moments in the right column are: −ε + π, π, ε + π, while going up along ki, i.e.
positive chirality (same as in the left column) with a phase shift by π. For the cycloidal ordering the resulting angles for
the transformed magnetic moments in the right column are: ε + 2δ, 2δ,−ε + 2δ, while going up along ki, so there is a
negative chirality.

For the 2-fold rotation 2001 from eq. (6) from the main text we get [Mx,My,Mz] → [−Mx,−My,Mz] and the modu-
lation vector ki → ki, so x4 → x4. For the helical ordering shown in Fig. S2a by 2001 one gets:M0x cos (2πx4)

M0y sin (2πx4)
0

→
M0x(−1) cos (2πx4)
M0y(−1) sin (2πx4)

0

 , (3)

corresponding to the positive chirality. For the cycloidal ordering shown in Fig. S2b by 2001: 0
M0y cos (2πx4)
M0z sin (2πx4)

→
 0
M0y(−1) cos (2πx4)
M0z sin (2πx4)

 , (4)
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Fig. S3. Action of a mirror in the (010) plane on a helical (a) and cycloidal (b) magnetic modulation described both
with the modulation vector k = [0, 0, ki]. The positions of magnetic ions from left column (numbered as 1, 2, 3) and their
magnetic moments are transformed by m010 giving magnetic ions shown in the right column: (1→ 1, 2→ 2, 3→ 3). The
angle between the magnetic moment direction and a reference direction in the spin rotation plane are shown (see text).
The angle between the magnetic moment of the ”spin0” ion, no. 2 in left column in panel (b), and the axis perpendicular
to the mirror plane: [010] is denoted as δ.

one gets the negative chirality.

1.3 Mirror, m010

In the last example one can consider the action of a (010) mirror plane as shown in Figs. S3a,b for helical and cycloidal
modulations respectively. The magnetic ions (numbered 1, 2, 3 are located at z3 = −1, 0, 1) shown in the left column have
the same magnetic moments arrangement as in the previous example, see Figs. S1. The transformation by m010 (eq. (8)
from the main text) gives the magnetic ions in the right column, (see Fig. S3: 1 → 1, 2 → 2, 3 → 3). For the helical
ordering the resulting angles for the transformed magnetic moments in the right column are: ε − 2δ,−2δ,−ε − 2δ while
going up along ki, i.e. negative chirality. For the cycloidal ordering the resulting angles for the transformed magnetic
moments in the right column are: ε+ 2δ, 2δ,−ε+ 2δ, i.e. also negative chirality.

For the mirror m010 from eq. (6) from the main text we get [Mx,My,Mz] → [−Mx,My,−Mz] (because mirrors have
determinant −1) and the modulation vector ki → ki, so x4 → x4. For the helical ordering shown in Fig. S3a one gets:M0x cos (2πx4)

M0y sin (2πx4)
0

→
M0x(−1) cos (2πx4)
M0y(+1) sin (2πx4)

0

 , (5)

while for the cycloidal ordering shown in Fig. S3b: 0
M0y cos (2πx4)
M0z sin (2πx4)

→
 0
M0y(+1) cos (2πx4)
M0z(−1) sin (2πx4)

 , (6)

i.e. both orderings change chirality due to m010.
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2 Magnetic superspace groups which allow helical and cycloidal magnetic
ordering

In this section one can find superspace groups which are compatible with the helical and cycloidal modulation. Tables S1
and S2 below contain all ’one-colour’ (Type I, i.e. without antisymmetry (′)) magnetic superspace groups (in standard
settings) which are build only from operators from Tables 2 and 3 from the main text. For practical magnetic structure
search one should consider also all the magnetic superspace groups derived from the ’one-colour’ group given below. This
task can be done by using the routine MGENPOS from Bilbao Crystallographic Server [4] or using the ISOTROPY
software suite [5, 6].

Columns ”FM”, ”AFM” and ”other” in Tables S1 and S2 indicate if given group is compatible with FM-type, AFM-
type and other than FM and AFM modulation, respectively. We point out that mulitplication of one half of operation by
{1′|0001/2} changes the non-modulated part while keeping unchanged the magnetic modulation i.e. FM-type modulations
remains FM-type, AFM-type remains AFM-type and ’other than FM and AFM’-type also does not change which we will
denote as FM→FM, AFM→AFM, other→other. There are three ways to obtain magnetic superspace groups compatible
with helical or cycloidal ordering from ’one-colour’ (Type I) magnetic superspace groups:

• adding {1′|0001/2} as new generator produce Type II groups which give FM→FM, AFM→AFM, other→other,

• mulitplication of one half of the group operations by {1′|0001/2} produce Type III groups which give FM→FM,
AFM→AFM, other→other,

• adding magnetic centering produce Type IV groups which give FM→AFM, AFM→AFM, other→other (type IV
groups are not compatible with FM-type both modulated and non-modulated ordering).

If a helical FM ordering is possible in the general Wyckoff position than it is also possible in all Wyckoff positions of the
magnetic superspace group. Modulations other than FM may not be possible in all Wyckoff positions because symmetry
may restrict the magnetic moments to zero. Column ‘Equiv.’ shows equivalent sets of translations in internal coordinate
as taken from [7]. Equivalent superspace groups are given in multiple rows. Their equivalence is based on a change of the
modulation length by adding or subtracting a rational number, see e.g. [7]. Equivalent groups are duplicated in tables,
because we assume fixed length of modulation vector.

Allowing for rational component of modulation vector, kr will give magnetic superspace groups which keep chirality
but classification to FM, AFM and other types are more difficult, because in that case relative phase between spin chains
depend on position x1, x2, x3 of magnetic moment in the unit cell.
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Magnetic superspace groups which allow helical magnetic ordering

Table S1. HELIX - triclinic class 1 and monoclinic class 2 superspace groups
Class No. Symbol Equiv. FM AFM other

1(αβγ) 1.1 P1(αβγ) YES no no

3.1 P2(αβ0)0
2(αβ0)0 4.1 P21(αβ0)0 YES YES YES

5.1 B2(αβ0)0

3.3 P2(00γ)0
2(00γ)0 4.2 P21(00γ)0 0,s no YES no

5.2 B2(00γ)0
3.4 P2(00γ)s

2(00γ)s 4.2 P21(00γ)s 0,s YES no no
5.3 B2(00γ)s

.
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Table S1. HELIX (continued) - orthorhombic class 222 superspace groups
Class No. Symbol Equiv. FM AFM other

16.1 P222(00γ)000
17.1 P2221(00γ)000 000,00s
17.4 P2122(00γ)000
18.1 P21212(00γ)000
18.3 P21221(00γ)000 000,00s
19.1 P212121(00γ)000 000,00s

222(00γ)000 20.1 C2221(00γ)000 000,00s no YES YES
20.3 A2122(00γ)000
21.1 C222(00γ)000
21.5 A222(00γ)000
22.1 F222(00γ)000
23.1 I222(00γ)000
24.1 I212121(00γ)000
16.2 P222(00γ)00s
17.1 P2221(00γ)00s 000,00s
17.5 P2122(00γ)00s
18.2 P21212(00γ)00s
18.3 P21221(00γ)00s 000,00s
19.1 P212121(00γ)00s 000,00s

222(00γ)00s 20.1 C2221(00γ)00s 000,00s YES YES YES
20.4 A2122(00γ)00s
21.2 C222(00γ)00s
21.6 A222(00γ)00s
22.2 F222(00γ)00s
23.2 I222(00γ)00s
24.2 I212121(00γ)00s

Table S1. HELIX (continued) - tetragonal class 4 superspace groups
Class No. Symbol Equiv. FM AFM other

75.1 P4(00γ)0
76.1 P41(00γ)0 0,s,q

4(00γ)0 77.1 P42(00γ)0 0,s no no YES
78.1 P43(00γ)0 0,s,q
79.1 I4(00γ)0
80.1 I41(00γ)0 0,s
75.3 P4(00γ)s
76.1 P41(00γ)s 0,s,q

4(00γ)s 77.1 P42(00γ)s 0,s no no YES
78.1 P43(00γ)s 0,s,q
79.3 I4(00γ)s
80.1 I41(00γ)s 0,s

75.2 P4(00γ)q
76.1 P41(00γ)q 0,s,q

4(00γ)q 77.2 P42(00γ)q YES YES no
78.1 P43(00γ)q 0,s,q
79.2 I4(00γ)q
80.2 I41(00γ)q
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Table S1. HELIX (continued) - tetragonal class 422 superspace groups
Class No. Symbol Equiv. FM AFM other

89.1 P422(00γ)000
90.1 P4212(00γ)000
91.1 P4122(00γ)000 000,s00,q00
92.1 P41212(00γ)000 000,s00,q00

422(00γ)000 93.1 P4222(00γ)000 000,s00 no no YES
94.1 P42212(00γ)000 000,s00
95.1 P4322(00γ)000 000,s00,q00
96.1 P43212(00γ)000 000,s00,q00
97.1 I422(00γ)000
98.1 I4122(00γ)000 000,s00
89.3 P422(00γ)s00
90.3 P4212(00γ)s00
91.1 P4122(00γ)s00 000,s00,q00
92.1 P41212(00γ)s00 000,s00,q00

422(00γ)s00 93.1 P4222(00γ)s00 000,s00 no no YES
94.1 P42212(00γ)s00 000,s00
95.1 P4322(00γ)s00 000,s00,q00
96.1 P43212(00γ)s00 000,s00,q00
97.3 I422(00γ)s00
98.1 I4122(00γ)s00 000,s00

89.2 P422(00γ)q00
90.2 P4212(00γ)q00
91.1 P4122(00γ)q00 000,s00,q00
92.1 P41212(00γ)q00 000,s00,q00

422(00γ)q00 93.2 P4222(00γ)q00 YES YES YES
94.2 P42212(00γ)q00
95.1 P4322(00γ)q00 000,s00,q00
96.1 P43212(00γ)q00 000,s00,q00
97.2 I422(00γ)q00
98.2 I4122(00γ)q00

Table S1. HELIX (continued) - trigonal class 3 and 32 superspace groups
Class No. Symbol Equiv. FM AFM other

143.2 P3(00γ)0
3(00γ)0 144.2 P31(00γ)0 0,t no no YES

145.2 P32(00γ)0 0,t
146.1 R3(00γ)0
143.3 P3(00γ)t

3(00γ)t 144.2 P31(00γ)t 0,t YES no YES
145.2 P32(00γ)t 0,t
146.2 R3(00γ)t

149.2 P312(00γ)000
150.1 P321(00γ)000
151.2 P3112(00γ)000 000,t00

32(00γ)000 152.1 P3121(00γ)000 000,t00 no no YES
153.2 P3212(00γ)000 000,t00
154.1 P3221(00γ)000 000,t00
155.1 R32(00γ)00
149.3 P312(00γ)t00
150.2 P321(00γ)t00
151.2 P3112(00γ)t00 000,t00

32(00γ)t00 152.1 P3121(00γ)t00 000,t00 YES YES YES
153.2 P3212(00γ)t00 000,t00
154.1 P3221(00γ)t00 000,t00
155.2 R32(00γ)t0

8



Table S1. HELIX (continued) - hexagonal class 6 superspace groups
Class No. Symbol Equiv. FM AFM other

168.1 P6(00γ)0
169.1 P61(00γ)0 0,h,t,s

6(00γ)0 170.1 P65(00γ)0 0,h,t,s no no YES
171.1 P62(00γ)0 0,t
172.1 P64(00γ)0 0,t
173.1 P63(00γ)0 0,s
168.4 P6(00γ)s
169.1 P61(00γ)s 0,h,t,s

6(00γ)s 170.1 P65(00γ)s 0,h,t,s no no YES
171.2 P62(00γ)s h,s
172.2 P64(00γ)s h,s
173.1 P63(00γ)s 0,s

168.2 P6(00γ)h
169.1 P61(00γ)h 0,h,t,s

6(00γ)h 170.1 P65(00γ)h 0,h,t,s YES no YES
171.2 P62(00γ)h h,s
172.2 P64(00γ)h h,s
173.2 P63(00γ)h h,t
168.3 P6(00γ)t
169.1 P61(00γ)t 0,h,t,s

6(00γ)t 170.1 P65(00γ)t 0,h,t,s no YES YES
171.1 P62(00γ)t 0,t
172.1 P64(00γ)t 0,t
173.2 P63(00γ)t h,t

Table S1. HELIX (continued) - hexagonal class 622 superspace groups
Class No. Symbol Equiv. FM AFM other

177.1 P622(00γ)000
178.1 P6122(00γ)000 000,h00,t00,s00

622(00γ)000 179.1 P6522(00γ)000 000,h00,t00,s00 no no YES
180.1 P6222(00γ)000 000,t00
181.1 P6422(00γ)000 000,t00
182.1 P6322(00γ)000 000,s00
177.4 P622(00γ)s00
178.1 P6122(00γ)s00 000,h00,t00,s00

622(00γ)s00 179.1 P6522(00γ)s00 000,h00,t00,s00 no no YES
180.2 P6222(00γ)s00 h00,s00
181.2 P6422(00γ)s00 h00,s00
182.1 P6322(00γ)s00 000,s00

177.2 P622(00γ)h00
178.1 P6122(00γ)h00 000,h00,t00,s00

622(00γ)h00 179.1 P6522(00γ)h00 000,h00,t00,s00 YES YES YES
180.2 P6222(00γ)h00 h00,s00
181.2 P6422(00γ)h00 h00,s00
182.2 P6322(00γ)h00 h00,t00
177.3 P622(00γ)t00
178.1 P6122(00γ)t00 000,h00,t00,s00

622(00γ)t00 179.1 P6522(00γ)t00 000,h00,t00,s00 no YES YES
180.1 P6222(00γ)t00 000,t00
181.1 P6422(00γ)t00 000,t00
182.2 P6322(00γ)h00 h00,t00
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Magnetic superspace groups which allow cycloidal magnetic ordering

Table S2. CYCLOID - triclinic class 1 and monoclinic class 2 and class m superspace groups
Class No. Symbol Equiv. FM AFM other

1(αβγ) 1.1 P1(αβγ) YES no no

3.1 P2(αβ0)0
2(αβ0)0 4.1 P21(αβ0)0 YES YES YES

5.1 B2(αβ0)0

6.1 Pm(αβ0)0
m(αβ0)0 7.1 Pb(αβ0)0 0,s no YES no

8.1 Bm(αβ0)0
9.1 Bb(αβ0)0 0,s
6.2 Pm(αβ0)s

m(αβ0)s 7.1 Pb(αβ0)s 0,s YES no no
8.2 Bm(αβ0)s
9.1 Bb(αβ0)s 0,s

6.4 Pm(00γ)0
m(00γ)0 7.3 Pb(00γ)0 YES YES YES

8.3 Bm(00γ)0
9.2 Bb(00γ)0

.
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Table S2. CYCLOID (continued) - orthorhombic class mm2 superspace groups, part 1/2
Class No. Symbol Equiv. FM AFM other

25.9 P2mm(00γ)000
26.7 P21am(00γ)000
26.9 P21ma(00γ)000
27.5 P2aa(00γ)000
28.10 P2cm(00γ)000 000,0s0
28.11 P2mb(00γ)000
29.4 P21ca(00γ)000 000,0s0
29.5 P21ab(00γ)000
30.4 P2na(00γ)000 000,0s0
30.5 P2an(00γ)000
31.5 P21nm(00γ)000 000,0s0
31.6 P21mn(00γ)000
32.6 P2cb(00γ)000 000,0s0
33.4 P21nb(00γ)000 000,0s0
33.5 P21cn(00γ)000 000,0s0

2mm(00γ)000 34.4 P2nn(00γ)000 000,0s0
and 35.7 A2mm(00γ)000 no YES YES

m2m(00γ)000 36.5 A21am(00γ)000
36.7 A21ma(00γ)000
37.5 A2aa(00γ)000
38.1 C2mm(00γ)000
38.11 Am2m(00γ)000
39.1 C2mb(00γ)000
39.11 Ac2m(00γ)000
40.1 C2cm(00γ)000 000,0s0
40.7 Am2a(00γ)000
41.1 C2cb(00γ)000 000,0s0
41.7 Ac2a(00γ)000
42.7 F2mm(00γ)000
43.3 F2dd(00γ)000 000,0s0
44.4 I2mm(00γ)000
45.4 I2cb(00γ)000
46.5 I2mb(00γ)000
46.7 I2cm(00γ)000
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Table S2. CYCLOID (continued) - orthorhombic class mm2 superspace groups, part 2/2
Class No. Symbol Equiv. FM AFM other

25.10 P2mm(00γ)0s0
26.8 P21am(00γ)0s0
26.10 P21ma(00γ)0s0
27.6 P2aa(00γ)0s0
28.10 P2cm(00γ)0s0 000,0s0
28.12 P2mb(00γ)0s0
29.4 P21ca(00γ)0s0 000,0s0
29.6 P21ab(00γ)0s0
30.4 P2na(00γ)0s0 000,0s0
30.6 P2an(00γ)0s0
31.5 P21nm(00γ)0s0 000,0s0
31.7 P21mn(00γ)0s0
32.6 P2cb(00γ)0s0 000,0s0
33.4 P21nb(00γ)0s0 000,0s0
33.5 P21cn(00γ)0s0 000,0s0

2mm(00γ)0s0 34.4 P2nn(00γ)0s0 000,0s0
and 35.8 A2mm(00γ)0s0 YES YES YES

m2m(00γ)s00 36.6 A21am(00γ)0s0
36.8 A21ma(00γ)0s0
37.6 A2aa(00γ)0s0
38.2 C2mm(00γ)0s0
38.12 Am2m(00γ)s00
39.2 C2mb(00γ)0s0
39.12 Ac2m(00γ)s00
40.1 C2cm(00γ)0s0 000,0s0
40.8 Am2a(00γ)s00
41.1 C2cb(00γ)0s0 000,0s0
41.8 Ac2a(00γ)s00
42.8 F2mm(00γ)0s0
43.3 F2dd(00γ)0s0 000,0s0
44.5 I2mm(00γ)0s0
45.5 I2cb(00γ)0s0
46.6 I2mb(00γ)0s0
46.8 I2cm(00γ)0s0
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