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Supporting information for the paper The quaternion-based spatial-coordinate
and orientation-frame alignment problems is presented here. The most signifi-
cant additional result is the extension of the 3D treatment in the main text to four
dimensions. Following a review of quaternion properties now including the rep-
resentation of 4D rotations using quaternion pairs, we give a detailed study of
the 4D quaternion-based spatial-coordinate alignment problem, which is signifi-
cantly different from the 3D problem in the main text. Next, we use the 4D quater-
nion rotation method to extend our treatment to 4D orientation-frame alignment.
The 3D Bar-Itzhak profile-matrix method for extracting a quaternion from a 3D
numerical rotation matrix is extended to 4D numerical rotation matrices, followed
by a look at the algebraic solutions of 2D alignment problems, whose deceptive
simplicity does not carry over to the 3D and 4D cases. Finally, we supplement the
3D orientation alignment section of the main text with careful studies of the prop-
erties, limitations, and features of our 3D orientation frame alignment methods,
followed by an extended exposition and analysis of the strengths and weaknesses
of the 6DOF combined spatial and orientation frame alignment techniques. The
Appendix provides a comprehensive study of the quartic equation solutions to
eigenvalue problems, focusing on applications to the eigensystems of real sym-
metric matrices.

1. Foundations of Quaternions for 3D and 4D Problems
We begin with a review of quaternion properties used in the 3D analysis, folding in some additional details, and then
systematically add the extensions that are exploited to handle the 4D case. The treatment here is designed to be self-
contained, repeating any relevant material from the main paper, thus avoiding any confusion involving cross-references
to the main paper for equations and conceptual background.

Quaternions for 3D Analysis. We take a quaternion to be a point q = (q0, q1, q2, q3) = (q0, q) in 4D Euclidean
space with unit norm, q · q = 1 (see, e.g., (Hanson, 2006) for further details about quaternions). The last three terms,
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q, play the role of a generalized imaginary number, so the conjugation operation is q̄ = (q0,−q). Quaternions obey a
multiplication operation denoted by � and defined as follows:

q � p = Q(q) · p =

⎡
⎢⎢⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

p0

p1

p2

p3

⎤
⎥⎥⎦ = (q0 p0 − q · p, q0p + p0q + q × p) , (1)

where the orthonormal matrix Q(q) is an alternative form of quaternion multiplication that explicitly demonstrates
that the action of q on p by quaternion multiplication literally rotates the quaternion unit vector p in 4D Euclidean
space. Another non-trivial matrix form of quaternion multiplication that is useful in some calculations is the left-acting

matrix
∼
Q producing a right multiplication,

q � p =
∼
Q (p) · q =

⎡
⎢⎢⎣

p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦ . (2)

Choosing exactly one of the three imaginary components in both q and p to be nonzero gives back the classic
complex algebra (q0 + iq1)(p0 + ip1) = (q0 p0 − q1 p1) + i (q0 p1 + p0q1), so there are three copies of the complex
numbers embedded in the quaternion algebra; the difference is that in general the final term q × p changes sign if
one reverses the order, making the quaternion product order-dependent, unlike the complex product. Quaternions also
satisfy the nontrivial “multiplicative norm” relation

‖q‖ ‖p‖ = ‖q � p‖ , (3)

where ‖q‖2 = q·q = �(q � q̄), that uniquely characterizes the real, complex, quaternion, and octonion number systems
comprising the Hurwitz algebras. Quaternions also obey a number of interesting scalar triple-product identities,

r · (q � p) = q · (r � p̄) = p̄ · (r̄ � q) = r̄ · (p̄ � q̄) , (4)

where the complex conjugate entries are the natural consequences of the sign changes occurring only in the (imaginary)
3D part.

Conjugating a vector x = (x, y, z) written as a purely “imaginary” quaternion (0, x) by quaternion multiplication
is isomorphic to the construction of a 3D Euclidean rotation R(q) generating all possible elements of the special
orthogonal group SO(3). If we compute

q � (c, x, y, z) � q̄ = (c, R3(q) · x) , (5)

we see that only the purely imaginary part is affected, whether or not the arbitrary real constant c = 0. Collecting
coefficients gives this fundamental form of an arbitrary 3D rotation expressed in terms of quaternions,

[R3(q)]i j = δi j

(
q0

2 − q2
)
+ 2qiq j − 2εi jkq0qk

R3(q) =

⎡
⎣ q0

2 + q1
2 − q2

2 − q3
2 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q0
2 − q1

2 + q2
2 − q3

2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q0
2 − q1

2 − q2
2 + q3

2

⎤
⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (6)

where the mapping from q to R3(q) is two-to-one because R3(q) = R3(−q). Note that R3(q) is a proper rotation, with
determinant det R3(q) = (q · q)3 = +1, and that the identity quaternion qID = (1, 0, 0, 0) ≡ q � q̄ corresponds to
the identity rotation matrix, as does −qID = (−1, 0, 0, 0). The columns of R3(q) are exactly the needed quaternion
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representation of the frame triad describing the orientation of a body in 3D space, i.e., the columns are the vectors
of the frame’s local x, y, and z axes relative to an initial identity frame. Choosing the following parameterization
preserving q · q = 1 (with n̂ · n̂ = 1),

q = (cos(θ/2), n̂1 sin(θ/2), n̂2 sin(θ/2), n̂3 sin(θ/2)) , (7)

gives the “axis-angle” form of the rotation matrix,

R3(q) = R3(θ, n̂) =

⎡
⎣ cos θ + (1 − cos θ) n̂ 2

1 (1 − cos θ) n̂1n̂2 − sin θ n̂3 (1 − cos θ) n̂1n̂3 + sin θ n̂2

(1 − cos θ) n̂1n̂2 + sin θ n̂3 cos θ + (1 − cos θ) n̂ 2
2 (1 − cos θ) n̂2n̂3 − sin θ n̂1

(1 − cos θ) n̂1n̂3 − sin θ n̂2 (1 − cos θ) n̂2n̂3 + sin θ n̂1 cos θ + (1 − cos θ) n̂ 2
3

⎤
⎦ . (8)

This form of the 3D rotation exposes the fact that the direction n̂ is fixed, so n̂ is the lone real eigenvector of R3.
Multiplying a quaternion p by the quaternion q to get a new quaternion p′ = q � p simply rotates the 3D frame
corresponding to p by the matrix Eq. (6) written in terms of q, so

R3(q � p) = R3(q) · R3(p) , (9)

and this collapse of repeated rotation matrices into a single rotation matrix with a quaternion-product argument can be
continued indefinitely.

Remark: Eigensystem and properties of R3: One of our themes is constructing and understanding eigensystems of
interesting matrices, so here, as an aside, we expand the content of the previous paragraph to include some additional
details. First, note that we have two ways of writing the 3D rotation, as R3(θ, n̂) and as R3(q). Thus there are two ways
to write the eigenvalues, which we can compute to be⎧⎪⎨

⎪⎩
1

eiθ

e−iθ

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

1

(q0
2 − q1

2 − q2
2 − q3

2 + 2iq0

√
q1

2 + q2
2 + q3

2)

(q0
2 − q1

2 − q2
2 − q3

2 − 2iq0

√
q1

2 + q2
2 + q3

2)

⎫⎪⎬
⎪⎭ , (10)

respectively, where the two columns are of course identical, but we have chosen expressions in q (along with an implicit
choice of square root sign determining sin(θ/2)) that match exactly with the R3(q) eigenvectors. Those eigenvectors
(unnormalized for notational clarity) can be written as:⎧⎨

⎩
⎡
⎣ n1

n2

n3

⎤
⎦

⎡
⎣ −i n2 − n1n3

i n1 − n2n3

n1
2 + n2

2

⎤
⎦

⎡
⎣ +i n2 − n1n3

−i n1 − n2n3

n1
2 + n2

2

⎤
⎦

⎫⎬
⎭

⎧⎨
⎩

⎡
⎣ q1

q2

q3

⎤
⎦

⎡
⎣ − q1q3 − i q2

√
q1

2 + q2
2 + q3

2

− q2q3 + i q1

√
q1

2 + q2
2 + q3

2

q1
2 + q2

2

⎤
⎦

⎡
⎣ − q1q3 + i q2

√
q1

2 + q2
2 + q3

2

− q2q3 − i q1

√
q1

2 + q2
2 + q3

2

q1
2 + q2

2

⎤
⎦

⎫⎬
⎭

(11)
where we emphasize that in general R3 has only one real eigenvalue (which is unity), whose eigenvector is the direction
of the 3D axis n̂ invariant under that particular rotation. Since any quaternion can be written in the form Eq. (7), the
trace of any rotation can be written as

tr R3 = 3q0
2 − q1

2 − q2
2 − q3

2 = 4q0
2 − 1 = 1 + 2 cos θ , (12)

which follows from the half-angle formula. This means that, in the RMSD formula maximizing tr(R3 · E), if E is an
identity matrix, the rotation giving the maximal trace corresponds to R3 being the identity matrix, θ = 0, and if E is a
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rotation matrix, the maximal trace occurs when the product of the two matrices has vanishing angle θ for the composite
matrix produced by the product of their two quaternions, so the optimal rotation matrix R3 is the inverse of E . This
property is exploited in the Bar-Itzhack algorithm given in Section 4.

The Slerp. Relationships among quaternions can be studied using the slerp, or “spherical linear interpolation” (Shoemake,
1985; Jupp & Kent, 1987), that smoothly parameterizes the points on the shortest geodesic quaternion path between
two constant (unit) quaternions, q0 and q1, as

slerp(q0, q1, s) ≡ q(s)[q0, q1] = q0
sin((1 − s)φ)

sinφ
+ q1

sin(s φ)
sinφ

. (13)

Here cosφ = q0 · q1 defines the angle φ between the two given quaternions, while q(s = 0) = q0 and q(s = 1) = q1.
The ”long” geodesic can be obtained for 1 ≤ s ≤ 2π/φ. For small φ, this reduces to the standard linear interpolation
(1 − s) q0 + s q1. The unit norm is preserved, q(s) · q(s) = 1 for all s, so q(s) is always a valid quaternion and R(q(s))
defined by Eq. (6) is always a valid 3D rotation matrix. We note that one can formally write Eq. (13) as an exponential
of the form q0 � (q̄0 � q1)

s, but since this requires computing a logarithm and an exponential whose most efficient
reduction to a practical computer program is Eq. (13), this is mostly of pedagogical interest.

Double Quaternions and 4D Rotations. We now extend Eq. (6) from three Euclidean dimensions to four Euclidean
dimensions by choosing two distinct quaternions and generalizing Eq. (5) to 4D points x4 = (w, x, y, z) as follows:

p � (w, x, y, z) � q̄ = R4(p, q) · x4 . (14)

Here R4 turns out to be an orthonormal 4D rotation matrix that is quadratic in the pair (p, q) of unit quaternion
elements, which together have exactly the six degrees of freedom required for the most general 4D Euclidean rotation
in the special orthogonal group SO(4). The algebraic form of this 4D rotation matrix is

R4(p, q) =

⎡
⎢⎢⎣

p0q0 + p1q1 + p2q2 + p3q3 −p1q0 + p0q1 + p3q2 − p2q3

p1q0 − p0q1 + p3q2 − p2q3 p0q0 + p1q1 − p2q2 − p3q3

p2q0 − p3q1 − p0q2 + p1q3 p3q0 + p2q1 + p1q2 + p0q3

p3q0 + p2q1 − p1q2 − p0q3 −p2q0 + p3q1 − p0q2 + p1q3

−p2q0 − p3q1 + p0q2 + p1q3 −p3q0 + p2q1 − p1q2 + p0q3

−p3q0 + p2q1 + p1q2 − p0q3 p2q0 + p3q1 + p0q2 + p1q3

p0q0 − p1q1 + p2q2 − p3q3 −p1q0 − p0q1 + p3q2 + p2q3

p1q0 + p0q1 + p3q2 + p2q3 p0q0 − p1q1 − p2q2 + p3q3

⎤
⎥⎥⎦ ,

(15)

where det R4(p, q) = (p · p)2(q · q)2 = +1 and tr R4(p, q) = 4p0q0. Since this is a quadratic form in p and q, the
rotation is unchanged under (p, q) → (−p,−q), and the quaternions are again a double covering. If we set p = q, we
recover a matrix that leaves the w component invariant, and is just the rotation Eq. (6) for the x3 = (x, y, z) component.

We also find the interesting result that R4(q, qID) = Q(q) from Eq. (1), and R4(qID, p̄) =
∼
Q (p) from Eq. (2).

Rotations in 4D can be composed in quaternion form parallel to the 3D case, with

R4(p, q) · R4(p′, q′) = R4(p � p′, q � q′) .

We observe that the 4D columns of Eq. (15) can be used to define 4D Euclidean orientation frames in the same fashion
as the 3D columns of Eq. (6), and we will exploit this to treat the 4D orientation-frame alignment problem below.

Remark: Eigensystem and properties of R4: We can also compute the eigenvalues of our 4D rotation matrix R4(p, q)
from Eq. (15). The 3D form of R3(q) in terms of explicit fixed axes that we used does not have an exact analog in 4D
because 4D rotations leave a plane invariant, not an axis. Nevertheless, we can still find very compact form for the 4D
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eigenvalues. Our exact 4D analog of Eq. (10), after applying the transformations q1
2 + q2

2 + q3
2 → 1 − q0

2 for q and
p to simplify the expression, is just⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0q0 − σ(p0, q0)

(
+
√(

1 − p0
2) (1 − q0

2)+ i
√(

1 − p0
2) q0

2 + i
√

p0
2
(
1 − q0

2) )

p0q0 − σ(p0, q0)

(
+
√(

1 − p0
2) (1 − q0

2)− i
√(

1 − p0
2) q0

2 − i
√

p0
2
(
1 − q0

2) )

p0q0 − σ(p0, q0)

(
−
√(

1 − p0
2
) (

1 − q0
2
)
+ i

√(
1 − p0

2
)

q0
2 − i

√
p0

2
(
1 − q0

2
) )

p0q0 − σ(p0, q0)

(
−
√(

1 − p0
2) (1 − q0

2)− i
√(

1 − p0
2) q0

2 + i
√

p0
2
(
1 − q0

2) )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (16)

where the overall sign in the right-hand terms depends on the sign of p0q0 = (1/4) tr R4(p, q),

σ(p0, q0) = sign(p0q0) .

This feature is subtle, and arises in the process of removing a spurious apparent asymmetry between p0 and q0 in

the eigenvalue expressions associated with the appearance of
√

q0
2 and

√
p0

2; incorrect signs arise in removing the
square roots without σ(p0, q0), which is required to make the determinant equal to the products of the eigenvalues. The
eigenvectors can be computed in the usual way, but we know of no informative simple algebraic form. Interestingly,
the eigensystem of the profile matrix of R4(p, q), discussed later in Section 4, is much simpler.

2. Double-Quaternion Approach to the 4D RMSD Problem
Here we present the nontrivial steps needed to understand and solve the 4D spatial and orientation-frame RMSD
optimization problems in the quaternion framework. We extend our solutions for 4 × 4 symmetric, traceless profile
matrices M3 arising from 3D Euclidean data to the case of unconstrained 4 × 4 profile matrices M4, which arise
naturally for 4D Euclidean data.

While we might expect the quaternion eigensystem of the 4D profile matrix to allow us to solve the 4D RMSD
problem in exactly the same fashion as in 3D, this is, interestingly, false. We will need several stages of analysis to
actually find the correct way to exploit quaternions in the 4D RMSD optimization context. In this Section, we study
the problem by itself, in a way that can be easily solved using a quaternion approach with the numerical methods
traditional in the 3D problem. We devote the Appendix to a detailed treatment of the alternative algebraic solutions to
the eigensystems of the 4× 4 symmetric real matrices that are relevant to our quaternion-based spatial-coordinate and
orientation-frame alignment problems in 3D and 4D.

2.1. Review of the Notation for the RMSD Problem

Our starting point for all alignment analysis is the minimization of the difference measure quantifying the rotational
alignment of a D-dimensional set of point test data {xk} relative to a reference data set {yk},

SD =

N∑
k=1

‖RD · xk − yk‖2 , (17)
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which we replace by a maximization of its cross-term

ΔD =
N∑

k=1

(RD · xk) · yk =
D∑

a=1,b=1

RD
baEab = tr RD · E, (18)

where E is the cross-covariance matrix

Eab =

N∑
k=1

[xk]a [yk]b =
[
X · Y T]

ab
, (19)

and [xk] denotes the kth column of X.
For 3D data, we convert this to a quaternion matrix problem by applying Eq. (6) to get

Δ(q) = tr R3(q) · E = (q0, q1, q2, q3) · M3(E) · (q0, q1, q2, q3)
T ≡ q · M3(E) · q , (20)

Choosing the traditional 3D indexing {x, y, z} for (a, b), the traceless, symmetric profile matrix takes the form

M3(E)=

⎡
⎢⎢⎣

Exx + Eyy + Ezz Eyz − Ezy Ezx − Exz Exy − Eyx

Eyz − Ezy Exx − Eyy − Ezz Exy + Eyx Ezx + Exz

Ezx − Exz Exy + Eyx −Exx + Eyy − Ezz Eyz + Ezy

Exy − Eyx Ezx + Exz Eyz + Ezy −Exx − Eyy + Ezz

⎤
⎥⎥⎦ . (21)

The maximal measure is given by the eigensystem of the maximal eigenvalue εopt of M3 and the corresponding
quaternion eigenvector qopt, with the result

Δopt = tr[R3(qopt) · E]
= qopt · M3 · qopt
= qopt ·

(
εopt qopt

)
= εopt

⎫⎪⎪⎬
⎪⎪⎭ . (22)

2.2. Starting Point for the 4D RMSD Problem.

The 4D double quaternion matrix Eq. (15) provides the most general quaternion context that we know of for express-
ing an RMSD problem. We start with the RMSD minimization problem for 4D Euclidean point data expressed as the
maximization problem for the by-now-familiar cross-term expression

Δ4 =

N∑
k=1

(R4 · xk) · yk =

3∑
a=0,b=0

R4
baE4:ab = tr R4 · E4, (23)

where

E4:ab =

N∑
k=1

[xk]a [yk]b =
[
X · Y T]

ab
(24)

is the cross-covariance matrix whose (a, b) indices we will usually write as (w, x, y, z) in the manner of Eq. (21).
Using Eq. (15) in Eq. (23) to perform the 4D version of the rearrangement of the similarity function, we can rewrite

our measure as

Δ4 = tr R4(p, q) · E4 = (p0, p1, p2, p3) · M4(E4) · (q0, q1, q2, q3)
T ≡ p · M4(E4) · q , (25)
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where the profile matrix for the 4D data now becomes

M4(E4) =

⎡
⎢⎢⎣

Eww + Exx + Eyy + Ezz Eyz − Ezy − Ewx + Exw Ezx − Exz − Ewy + Eyw Exy − Eyx − Ewz + Ezw

Eyz − Ezy + Ewx − Exw Eww + Exx − Eyy − Ezz Exy + Eyx − Ewz − Ezw Ezx + Exz + Ewy + Eyw

Ezx − Exz + Ewy − Eyw Exy + Eyx + Ewz + Ezw Eww − Exx + Eyy − Ezz Eyz + Ezy − Ewx − Exw

Exy − Eyx + Ewz − Ezw Ezx + Exz − Ewy − Eyw Eyz + Ezy + Ewx + Exw Eww − Exx − Eyy + Ezz

⎤
⎥⎥⎦ (26)

and we note that, in contrast to M3(E3), M4(E4) is neither traceless nor symmetric.

2.3. A Tentative 4D Eigensystem

Our task is now to find an algorithm that allows us to successfully compute the quaternion pair (popt, qopt), or,
equivalently, the global rotation R4(popt, qopt), that maximizes the measure

Δ4 = tr R4(p, q) · E4 = p · M4(E4) · q , (27)

with M4(E4) a general real matrix with a generic trace and no symmetry conditions. Note that now we can have both left
and right eigenvectors p and q for a single eigenvalue of the profile matrix M4: q would correspond to the eigenvectors
of M4, and p would correspond to the eigenvectors of the transpose M4

T. Warning: The eigensystem of M4 typically
has some complex eigenvalues and is furthermore insufficient by itself to solve the 4D RMSD optimization problem, so
additional refinements will be necessary. We now explore a path to an optimal solution amenable to quaternion-based
numerical evaluation, with applicable algebraic approaches elaborated in the Appendix.

For some types of calculations, we may find it useful to decompose M4 in a way that isolates particular features
using the form

M4(w, x, y, z, . . .) =

⎡
⎢⎢⎣

w + x + y + z a − aw b − bw c − cw

a + aw w + x − y − z C −Cw B + Bw

b + bw C +Cw w − x + y − z A − Aw

c + cw B − Bw A + Aw w − x − y + z

⎤
⎥⎥⎦ , (28)

where (w, x, y, z) = (Eww, Exx, Eyy, Ezz), a = Eyz − Ezy, cyclic, A = Eyz + Ezy, cyclic, aw = Ewx − Exw, cyclic,
Aw = Ewx + Exw, cyclic, and tr(M4) = 4w. This effectively exposes the structural symmetries of M4.

We next review the properties of the eigenvalue equation det[M4 − eI4] = 0, where e is the variable we solve for to
obtain the four eigenvalues εk, and I4 denotes the 4D identity matrix; transposing M4 does not change the eigenvalues
but does interchange the distinct left and right eigenvectors. While M4 itself has new properties, the corresponding
expressions in terms of e and εk, along with the outcome of eliminating e (Abramowitz & Stegun, 1970), are by now
familiar:

det[M4 − eI4] = e4 + e3 p1 + e2 p2 + ep3 + p4 = 0 (29)

(e − ε1)(e − ε2)(e − ε3)(e − ε4) = 0 (30)

p1 = (−ε1 − ε2 − ε3 − ε4)
p2 = (ε1ε2 + ε1ε3 + ε2ε3 + ε1ε4 + ε2ε4 + ε3ε4)
p3 = (−ε1ε2ε3 − ε1ε2ε4 − ε1ε3ε4 − ε2ε3ε4)
p4 = ε1ε2ε3ε4

⎫⎪⎪⎬
⎪⎪⎭ . (31)

We make no assumptions about M4, so its structure includes a trace term 4w = −p1 as well as the possible antisym-
metric components shown in Eq. (28), yielding the following expressions for the pk(E4) following from the expansion
of det[M4 − eI4]:

p1(E4) = − tr [M4] = −4w (32)
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p2(E4) =
1
2
(tr [M4])

2 − 1
2

tr [M4 · M4]

= 6w2 − 2(x2 + y2 + z2)− A2 − a2 − B2 − b2 −C2 − c2

+ Aw
2 + aw

2 + Bw
2 + bw

2 +Cw
2 + cw

2 (33)

p3(E4) = − 1
6
(tr [M4])

3
+

1
2

tr [M4 · M4] tr [M4]− 1
3

tr [M4 · M4 · M4]

= − 8xyz + 4w(x2 + y2 + z2)

− 2ABC − 2Abc − 2aBc − 2abC

+ 2A2x − 2a2x + 2B2y − 2b2y + 2C2z − 2c2z

− 2ABwCw + 2Abwcw − 2aBwcw + 2abwCw

− 2AwBCw + 2awBcw − 2awbCw + 2Awbcw

− 2AwBwC + 2awbwC − 2Awbwc + 2awBwc

+ 2a2w + 2A2w − 2A2
ww − 2A2

wx − 2a2
ww + 2a2

wx

+ 2b2w + 2B2w − 2B2
ww − 2B2

wy − 2b2
ww + 2b2

wy

+ 2c2w + 2C2w − 2C2
ww − 2C2

wz − 2c2
ww + 2c2

wz (34)

p4(E4) = det [M4] . (35)

2.4. Issues with the Naive 4D Approach

We previously found that we could maximize Δ3 = tr(R3 · E3) over the 3D rotation matrices R3 by mapping E3

to the profile matrix M3, with Δ3 = q · M3 · q, solving for the maximal eigenvalue εopt of the symmetric matrix M3,
and choosing Ropt = R3(qopt) with qopt the normalized quaternion eigenvector corresponding to Δ3(opt) = εopt. The
obvious 4D extension of the 3D quaternion RMSD problem would be to examine Δ4 = tr (R4 · E4) = qλ · M4 · qρ.
This is defined over the 4D rotation matrices R4, where M4 in Eq. (26) turns out no longer to be symmetric, so we
must split the eigenvector space into a separate left-quaternion qλ and right-quaternion qρ. We might guess that as in
the 3D case, M4 would have a maximal eigenvalue εopt (already a problem – it may be complex), and we could use
the “optimal” left and right eigenvectors qλ:opt and qρ:opt that could be obtained as the corresponding eigenvectors of
M4 and M4

T. Then the solution to the 4D optimization problem would look like this:

Δ4(opt)
?
= qλ:opt · M4 · qρ:opt = (qλ:opt · qρ:opt) εopt . (36)

Unfortunately, this is wrong. First, even when this result is real, Eq. (36) is typically smaller than the actual maximum
of tr(R4(qλ, qρ) · E4) over the space of 4D rotation matrices (or their equivalent representations in terms of a search
through qλ and qρ). Even a simple slerp through qID and just beyond the apparent optimal eigenvectors qλ:opt and qρ:opt
from an eigenvalue of M4 can yield larger values of Δ4! And, to add insult to injury, starting with those eigenvectors
qλ:opt and qρ:opt, one does not in general even find a basis for some normalized linear combination that yields the true
optimal result. What is going wrong, and what is the path to our hoped-for quaternionic solution to the 4D RMSD
problem, which seems so close to the 3D RMSD problem, but then fails so spectacularly to correspond to the obvious
hypothesis?

2.5. Insights from the Singular Value Decomposition

We know that the 3D version of Eq. (36) is certainly correct with εopt the maximal eigenvalue of M3(E3), and
we know also that there is some rotation matrix R4(qλ, qρ) that maximizes tr(R4(qλ, qρ) · E4) , and therefore the 4D
expression Eq. (36) must describe Δ4(opt) for some non-trivial pair of quaternions (qλ, qρ). The crucial issue is that
the 3D RMSD problem and the 4D RMSD problem differ, with 3D being a special case due to the symmetry of the
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4 × 4 profile matrix. We know also that the SVD form of the optimal rotation matrix is valid in any dimension, so we
conjecture that the key is to look at the commonality of the SVD solutions in 3D and 4D, and work backwards to see
how those non-quaternion-driven equations might relate to what we know is in principle a quaternion approach to the
4D problem that looks like Eq. (36).

Therefore, we first look at the general singular-value decomposition for the spatial alignment problem (Schönemann,
1966; Golub & van Loan, 1983) and then analyze the 3D and 4D problems to understand how we can recover a
quaternion-based construction of the 4D spatial RMSD solution. For 3D and 4D, the basic SVD construction of the
optimal rotation for a cross-covariance matrix E takes the form

{U, S, V} = SingularValueDecomposition(E) (37)

where

E(U, S,V) = U · S ·V T (38)

Ropt(U,D,V) = V · D ·U T (39)

D3 = Diagonal
(
1, 1, sign det(V ·U T)

)
(40)

D4 = Diagonal
(
1, 1, 1, sign det(V ·U T)

)
. (41)

Here U and V are orthogonal matrices that are usually ordinary rotations, while D is usually the identity matrix but can
be nontrivial in more situations than one might think. A critical component for this analysis is the diagonal matrix S,
whose elements are the all-positive square roots of the eigenvalues of the symmetric matrix E4

T · E4 (the trace of this
matrix is the squared Fröbenius norm of E). The first key fact is that in any dimension the RMSD cross-term obeys
the following sequence of transformations following from the SVD relations of Eqs. (38) –(41):

Δ(opt) = tr(Ropt · E) = tr(Ropt · [U · S ·V T])

= tr
(
[V · D ·U T] · [U · S ·V T]

)
= tr(D · S)

⎫⎪⎪⎬
⎪⎪⎭ . (42)

Note the appearance of D in the SVD formula for the optimal measure; we found in numerical experiments that
including this term is absolutely essential to guaranteeing agreement with brute force verification of the optimization
results, particularly in 4D.

3D Context. Thus an alternative to considering the 3D optimization of tr(R · E) in the context of E alone is to look at
the 3 × 3 matrices

F = E T · E

F ′ = E · E T

}
(43)

and to note that, although E itself will not in general be symmetric, F and F ′ are intrinsically symmetric. Thus
they have the same eigenvalues, and like all nonsingular matrices of this form, and unlike E itself, will have real
positive eigenvalues (Golub & van Loan, 1983) that we can write as (γ1, γ2, γ3). From Eq. (38), we can show that
tr F = tr F ′ = tr(S · S), and since the trace is the sum of the eigenvalues, the eigensystem of F or F ′ determines S. The
diagonal elements that enter naturally into the SVD are therefore just the square roots

S(E) = Diagonal (
√
γ1,

√
γ2,

√
γ3) . (44)

So far, this has no obvious connection to the quaternion system. For our next step, let us now examine how the
3D SVD system relates to the profile matrix M3(E3) derived from the quaternion decomposition to give the form in
Eq. (21). We define the analogs of Eq. (43) for a profile matrix as

G = M T · M

G′ = M · M T

}
, (45)
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where we recall that in 3D, εopt is just the maximal eigenvalue of M3(E). Thus if we arrange the eigenvalues of M3(E)
in descending order as (ε1, ε2, ε3, ε4), we obviously have

Eigenvalues(G) = Eigenvalues(G′) = (α1, α2, α3, α4) = (ε1
2, ε2

2, ε3
2, ε4

2) . (46)

Therefore, since we already know that ε1(M) = Δ(opt), we have precisely the sought-for connection,√
Max Eigenvalue(G) =

√
α1 = tr(D · S) = Δ(opt) = ε1(M) . (47)

That is, given E , compute M(E) from the quaternion decomposition, and, instead of examining the eigensystem of
M(E) itself, take the square root of the maximal eigenvalue of the manifestly symmetric, positive-definite real matrix
G = M T · M. This is the quaternion-based translation of the 3D application of the SVD method to obtaining the
optimal rotation: numerical methods in particular do not care whether you are computing the maximal eigenvalue of a
symmetric quaternion-motivated matrix M3 or of the associated symmetric matrix M3

T · M3.

Note: In 3D, we can compute all four of the eigenvalues of G from the three elements of S (Coutsias
et al., 2004): defining

Diagonal(D · S) = (λ1, λ2, λ3) , (48)

then we can write ⎡
⎢⎢⎣

α1

α2

α3

α4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(+λ1 + λ2 + λ3)
2

(−λ1 − λ2 + λ3)
2

(−λ1 + λ2 − λ3)
2

(+λ1 − λ2 − λ3)
2

⎤
⎥⎥⎥⎦ , (49)

where obviously
√
α1 = tr(D · S) is maximal.

The final step is to connect R3(opt) to a quaternion via R3(qopt) without requiring prior knowledge of the SVD
solution Eq. (39). We know that the square root of the maximal eigenvalue of G = M T ·M, which depends only on the
quaternion decomposition, gives us tr(D·S) = Δ(opt) without using the SVD, and we know that in 3D the profile matrix
M is symmetric, so G and G′ share a single maximal eigenvector v corresponding to α1 = (tr(D · S))2 = (Δ(opt))

2.
Using this eigenvector we thus have

v · G · v = (M · v) T · (M · v) = v · ((tr(D · S))2 v
)
= (Δ(opt))2 ,

so in this case v = qopt is itself the optimal eigenvector determining R3(qopt).

4D Context. The 4D case, as we are now aware, cannot be solved using the non-symmetric profile matrix M4(E4)
directly. But now we can see a more general way to exploit the 4D quaternion decomposition of Eq. (26) by construct-
ing the manifestly symmetric products

G = M4
T · M4

G′ = M4 · M4
T

}
. (50)

Although this superficially extends Eq. (45) to 4D, it is quite different because M4 is not itself symmetric (as M3 was),
and so, while G and G′ have the same eigenvalues, they have distinct eigenvectors qρ and qλ, respectively. If we use
the maximal eigenvalue α1 to solve for qρ and qλ as follows, these in fact will produce the optimal quaternion system.
First we solve these equations using the maximal eigenvalue α1 of G,

G · qρ = α1 qρ = (tr(D · S))2 qρ

G′ · qλ = α1 qλ = (tr(D · S))2 qλ

}
. (51)
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At this point, the signs of the eigenvectors have to be checked for a correction, since the eigenvector is still correct
whatever its sign or scale. But we know that the value of qλ · M4(E4) · qρ must be positive, so we simply check
that sign, and change, say, qλ → −qλ if needed to make the sign positive. There is still an overall sign ambiguity,
but that is natural and an intrinsic part of the rotation R4(qλ, qρ), so now we can use these eigenvectors to generate
the optimal measure for the 4D translational RMSD problem using only the quaternion-based data, giving finally the
whole spectrum of ways to write Δ4(opt):

Δ4(opt) = tr(R4:opt(qλ, qρ) · E4) = qλ · M4(E4) · qρ =
√
α1 . (52)

Note: In 4D, we can compute all the eigenvalues of G from the four elements of S: defining

Diagonal(D · S) = (λ1, λ2, λ3, λ4) , (53)

then we can write ⎡
⎢⎢⎣

α1

α2

α3

α4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(+λ1 + λ2 + λ3 + λ4)
2

(+λ1 + λ2 − λ3 − λ4)
2

(+λ1 − λ2 + λ3 − λ4)
2

(+λ1 − λ2 − λ3 + λ4)
2

⎤
⎥⎥⎥⎦ , (54)

where again
√
α1 = tr(D · S) is maximal.

Summary: Now we have the entire algorithm for solving the RMSD spatial alignment problem in 4D by exploiting
the quaternion decomposition of Eq. (25) and Eq. (26), based on Eq. (15), inspired by, but in no way dependent upon
knowing, the SVD solution to the problem:

• Compute the profile matrix. Using the quaternion decomposition Eq. (15) of the general 4D rotation matrix
R4(p, q), extract the 4D profile matrix M4(E4) of Eq. (26) from the initial proximity measure

Δ4 = tr(R4(p, q) · E4) = p · M4(E4) · q . (55)

So far all we know is the numerical value of M4 and the fact the Δ4 can be maximized by exploring the entire
space of the quaternion pair (p, q).

• Construct the symmetric matrices and extract the optimal eigenvalue. The maximal eigenvalue α1 of the
4 × 4 symmetric matrix G = M4

T · M4 is itself easily obtained by numerical means, just as one has done
traditionally for M3. If all we need is the optimal value of the proximity measure for comparison, we are done:

Δ4(opt) =
√

Max Eigenvalue
(
G = M4

T · M4
)
=

√
α1 . (56)

The alternative algebraic methods for computing the eigenvalues are discussed in the Appendix.
• If needed, compute the left and right eigenvectors of G: Our two distinct symmetric matrices, G = M4

T · M4

and G′ = M4 ·M4
T have their own distinct maximal eigenvectors, both corresponding to the maximal eigenvalue

α1 shared by G and G′, so we can easily use this common maximal numerical eigenvalue to solve

(G − α1I4) · qopt:ρ = 0
(G′ − α1I4) · qopt:λ = 0

}
(57)

for the numerical values of qopt:λ and qopt:ρ. We correct the signs so that qopt:λ · M4(E4) · qopt:ρ > 0, and then
these in turn yield the required 4D rotation matrix

R4:opt
(
qopt:λ, qopt:ρ

)
from Eq. (15).
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If everything is in order, all of the following ways of expressing Δ4(opt) should now be equivalent,

Δ4(opt) = tr(R4:opt
(
qopt:λ, qopt:ρ

) · E4) = qopt:λ · M4(E4) · qopt:ρ =
√
α1 , (58)

independently of the fact that one knows from the SVD decomposition of E4 that Δ4(opt) = tr(D · S) =
√
α1.

3. 4D Orientation-Frame Alignment

In this section, we review and slightly expand the details of the 3D orientation-frame in the main text. Then we extend
that treatment to handle the case of 4D orientation-frame alignment to complete the picture we started in Section 2 on
the 4D spatial frame alignment problem. A detailed evaluation of the accuracy of the 3D chord measure compared to
the arc-length measure, along with other questions, is given separately in Section 6.

3.1. Details of the 3D Orientation-Frame alignment Problem

We first review the basic structure of our 3D orientation-frame method and then proceed to present some additional
details.
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Figure 1
Geometric context involved in choosing a quaternion distance that will result in the correct average rotation matrix when the quaternion measures
are optimized. Because the quaternion vectors represented by t and −t give the same rotation matrix, one must choose | cosα| or the minima,
that is min (α, π − α) or min (‖q − t‖, ‖q + t‖) , of the alternative distance measures to get the correct items in the arc-length or chord measure
summations. (A) and (B) represent the cases when the first or second choice should be made, respectively.

S12 Hanson · Quaternion-based alignment Acta Cryst. (2020). A76, S1–S43



supporting information

Review of Orientation Frames in 3D. The ideal optimization problem for 3D orientation frames requires a measure
constructed from the geodesic arc lengths on the quaternion hypersphere. Starting with the bare angle between two
quaternions on S3, α = arccos(q1 · q2), where we recall that α ≥ 0, we define a pseudometric (Huynh, 2009) for the
geodesic arc-length distance as

dgeodesic(q1, q2) = min(α, π − α) : 0 ≤ dgeodesic(q1, q2) ≤ π

2
, (59)

as illustrated in Fig. (1). An efficient implementation of this is to take

dgeodesic(q1, q2) = arccos(|q1 · q2|) , (60)

which we now exploit to construct a measure from geodesic arc-lengths on the quaternion hypersphere instead of
Euclidean distances in space. Thus to compare a test quaternion-frame data set {pk} to a reference data set {rk}, we
employ the geodesic-based least squares measure

Sgeodesic =

N∑
k=1

(arccos |(q � pk) · rk|)2
=

N∑
k=1

(arccos |q · (rk � p̄k)|)2
, (61)

where the alternative second form follows from Eq. (4).
Since this does not easily fit into a linear algebra approach to construct optimal solutions to the orientation-frame

alignment problem, we choose to approximate the measure of Eq. (61) by the linearizable chord distance measure,
which does, under certain conditions, permit a valid closed form solution. We take as our approximate measure the
chordal pseudometric (Huynh, 2009; Hartley et al., 2013),

dchord(q1, q2) = min(‖q1 − q2‖, ‖q1 + q2‖) : 0 ≤ dchord(q1, q2) ≤
√

2 . (62)

We compare the geometric origins for Eq. (60) and Eq. (62) in Fig. (1). Note that the crossover point between the two
expressions in Eq. (62) is at π/2, so the hypotenuse of the right isosceles triangle at that point has length

√
2.

The solvable approximate optimization function analogous to ‖R·x−y‖2 that we will now explore for the quaternion-
frame alignment problem will thus take the form that must be minimized as

Schord =

N∑
k=1

(min(‖(q � pk)− rk‖, ‖(q � pk) + rk‖))2
. (63)

We can convert the sign ambiguity in Eq. (63) to a deterministic form like Eq. (60) by observing, with the help of
Fig. (1), that

‖q1 − q2‖2 = 2 − 2q1 · q2, ‖q1 + q2‖2 = 2 + 2q1 · q2 . (64)

Clearly (2− 2|q1 · q2|) is always the smallest of the two values. Thus minimizing Eq. (63) amounts to maximizing the
now-familiar cross-term form, which we can write as

Δchord(q) =
∑N

k=1 |(q � pk) · rk|
=

∑N
k=1 |q · (rk � p̄k)|

=
∑N

k=1 |q · tk|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (65)

Here we have used the identity (q� p) · r = q · (r� p̄) from Eq. (4) and defined the quaternion displacement or ”attitude
error” (Markley et al., 2007)

tk = rk � p̄k . (66)
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Note that we could have derived the same result using Eq. (3) to show that ‖q� p− r‖ = ‖q� p− r‖‖p‖ = ‖q− r � p̄‖.
The final step is to choose the samples of q that include our expected optimal quaternion, and adjust the sign of each

data value tk to
∼
t k by the transformation

∼
t k= tk sign(q · tk) → |q · tk| = q · ∼

t k . (67)

The neighborhood of q matters because, as argued by (Hartley et al., 2013), even though the allowed range of 3D
rotation angles is θ ∈ (−π, π) (or quaternion sphere angles α ∈ (−π/2, π/2)), convexity of the optimization problem
cannot be guaranteed for collections outside local regions centered on some θ0 of size θ0 ∈ (−π/2, π/2) (or α0 ∈
(−π/4, π/4)): beyond this range, local basins may exist that allow the mapping Eq. (67) to produce distinct local
variations in the assignments of the {∼

t k} and in the solutions for qopt. Within considerations of such constraints,
Eq. (67) now allows us to take the summation outside the absolute value, and write the quaternion-frame optimization
problem in terms of maximizing the cross-term expression

Δchord(q) =

N∑
k=1

q · ∼
t k

= q ·V (t)

⎫⎪⎪⎬
⎪⎪⎭ (68)

where V =
∑N

k=1

∼
t k is the analog of the Euclidean RMSD profile matrix M. However, since this is linear in q,

we have the remarkable result that, as noted in the treatment of (Hartley et al., 2013) regarding the quaternion L2

chordal-distance norm, the solution is immediate. We have simply

qopt =
V
‖V‖ , (69)

since that immediately maximizes the value of Δchord(q) in Eq. (68). This gives the maximal value of the measure as

Δchord(qopt) = ‖V‖ , (70)

and thus ‖V‖ is the exact orientation frame analog of the spatial RMSD maximal eigenvalue εopt, except it is far easier
to compute.

Alternative chord-measure approach parallel to the Euclidean case. Having understood the chordal distance
approach for the orientation-alignment problem in terms of the pseudometric Eq. (62) and the measure Eq. (65) trans-
formed into the form Eq. (68) involving the corrected quaternion displacements {∼

t k}, we now observe that we can
also express the problem in a form much closer to our Euclidean RMSD optimization problem. Returning to the form

Schord =

N∑
k=1

‖q � pk − rk‖2 . (71)

we see that we can effectively transform the sign of only pk →
∼
pk using the same test as Eq. (67) to make Eq. (71) valid

as it stands; we then proceed, in the same fashion as the spatial alignment problem but with the modification required
by Eq. (65), to convert to a cross-term form as follows:

Δchord(q) =

N∑
k=1

|(q � pk) · rk| =

N∑
k=1

(q�
∼
pk) · rk

=

3∑
a=0,b=0

Q(q)ba

N∑
k=1

[
∼
pk]a [rk]b

= tr Q(q) ·W . (72)
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Here W is essentially a cross-covariance matrix in the quaternion data elements and Q(q) is the quaternion matrix of
Eq. (1). Since Q(q) is linear in q, we can simply pull out their coefficients, yielding

Δchord(q) = q ·V (W ) , (73)

where V is a four-vector corresponding to the profile matrix in the spatial problem:

V (W ) =

⎡
⎢⎢⎣

+W00 +W11 +W22 +W33

+W01 −W10 +W23 −W32

+W02 −W20 +W31 −W13

+W03 −W30 +W12 −W21

⎤
⎥⎥⎦ . (74)

This is of course exactly the same as the quaternion difference transformation Eq. (66), expressed as a profile matrix
transformation, and Eq. (73) leads, assuming consistent data localization, to the same optimal unit quaternion

qopt =
V
‖V‖ , (75)

that maximizes the value of Δchord in Eq. (68), and the maximal value of the measure is again Δchord(qopt) = ‖V‖.

Matrix Form of the Linear Vector Chord Distance. While Eq. (68) (or Eq. (73)) does not immediately fit into
the eigensystem-based RMSD matrix method used in the spatial problem, it can in fact be easily transformed from a
system linear in q to an equivalent matrix system quadratic in q. Since any power of the optimization measure will
yield the same extremal solution, we can simply square the right-hand side of Eq. (68) and write the result in the form

Δchord-sq = (q ·V )(q ·V )

=

3∑
a=0,b=0

qa VaVb qb

= q · Ω · q , (76)

where Ωab = VaVb is a 4 × 4 symmetric matrix with det Ω = 0, and tr Ω =
∑

a Va
2 
= 0. The eigensystem of Ω is just

defined by the eigenvalue ‖V‖2, and combination with the spatial eigensystem can be achieved either numerically or
algebraically using the trace 
= 0 case of our quartic solution. The process differs dramatically from what we did with
Δchord, but the forms of the eigenvectors are necessarily identical. Thus it is in fact possible to merge the QFA system
for Δchord into the matrix method of the spatial RMSD using Eq. (76).

Fixing Sign Problem with Quadratic Rotation Matrix Chord Distance. However, there is another approach that
has a very natural way to incorporate manifestly sign-independent quaternion chord distances into our general context,
and which has a very interesting close relationship to Δchord. The method begins with the observation that full 3D
rotation matrices like Eq. (6) can be arranged to rotate the set of frames of the {pk} to be as close as possible to
the reference frame {rk} by employing a measure that is a particular product of rotation matrices. The essence is to
notice that the trace of any 3D rotation matrix expressed in axis-angle form (rotation about a fixed axis n̂ by θ) can be
expressed in two equivalent forms:

tr R(θ, n̂) = 1 + 2 cos θ (77)

tr R(q) = 3q0
2 − q1

2 − q2
2 − q3

2 = 4q0
2 − 1 , (78)

and therefore traces of rotation matrices can be turned into maximizable functions of the angles appearing in the trace.
Noting that the squared Fröbenius norm of a matrix M is the trace tr M · M T, we begin with the goal of minimizing a
Fröbenius norm of the form

‖R(q) · R(pk)− R(rk)‖2
Frob. ,
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and then convert from a minimization problem in this norm to a maximization of the cross-term as usual. The result
is, remarkably, an explicitly symmetric and traceless profile matrix in the quaternions. We thus begin with this form of
the orientation-frame measure (see, e.g., (Huynh, 2009; Moakher, 2002; Hartley et al., 2013)),

ΔRRR =

N∑
k=1

tr
[
R(q) · R(pk) · R−1(rk)

]
=

N∑
k=1

tr [R(q � pk � r̄k)]

=

N∑
k=1

tr [R(q) · R(pk � r̄k)] =

N∑
k=1

tr
[
R(q) · R−1(rk � p̄k)

]
, (79)

where r̄ denotes the complex conjugate or inverse quaternion. We note that due to the correspondence of ΔRRR with
a cosine measure (via Eq. (77)), this must be maximized to find the optimal q, so both Δchord and ΔRRR correspond
naturally to the cross-term measure we used for Euclidean point data, which we will later refer to as Δx when necessary
to distinguish it.

We next observe that the formulas for ΔRRR and the pre-summation arguments of Δchord are related as follows:

N∑
k=1

tr [R(q) · R(pk) · R(r̄k)] =

N∑
k=1

(
4 ((q � pk) · rk)

2 − (q · q)(pk · pk)(rk · rk)
)

, (80)

where of course the last term reduces to a constant since we apply the unit-length constraint to all the quaternions,
but is algebraically essential to the construction. The odd form of Eq. (80) is not a typographical error: the conjugate
r̄ of the reference data must be used in the R · R · R expression, and the ordinary r must be used in both terms on the
right-hand. We conclude that using the R · R · R measure and replacing the argument of Δchord by its square before
summing over k are equivalent maximizing measures that eliminate the quaternion sign dependence. Now using the
quaternion triple-term identity (q � p) · r = q · (r � p̄) of Eq. (4), we see that each term of ΔRRR reduces to a quaternion
product that is a quaternion difference, or a “quaternion displacement” tk = rk � p̄k, i.e., the rotation mapping each
individual test frame to its corresponding reference frame,

ΔRRR =

N∑
k=1

tr [R(q) · R(pk) · R(r̄k)] =

N∑
k=1

(
4 ((q � pk) · rk)

2 − (q · q)(pk · pk)(rk · rk)
)

=
N∑

k=1

(
4 (q · (rk � p̄k))

2 − 1
)

= 4
∑
a,b

qa

(
N∑

k=1

[tk]a [tk]b

)
qb − N

= 4 q · A(t) · q − N .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(81)

Here the 4 × 4 matrix A(t)ab =
∑N

k=1[tk]a [tk]b is the alternative (equivalent) profile matrix that was introduced by
(Markley et al., 2007; Hartley et al., 2013) for the chord-based quaternion-averaging problem. We can therefore use
either the measure ΔRRR or

ΔA = q · A(t) · q (82)

as our rotation-matrix-based sign-insensitive chord-distance optimization measure. Exactly like our usual spatial mea-
sure, these measures must be maximized to find the optimal q. It is, however, important to emphasize that the optimal
quaternion will differ for the Δchord , Δchord-sq , and ΔRRR ∼ ΔA measures, though they will normally be very similar.
More details are explored in Section 6.
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Details of Rotation Matrix Form.We now recognize that the sign-insensitive measures are all very closely related
to our original spatial RMSD problem, and all can be solved by finding the optimal quaternion eigenvector qopt of a
4 × 4 matrix. The procedure for Δchord-sq and ΔA follows immediately, but it is useful to work out the options for ΔRRR

in a little more detail.
Choosing Eq. (79) has the remarkable feature of producing, via Eq. (6) for R(q), an expression quadratic in q,

with a symmetric, traceless profile matrix U(p, r) that is quartic in the quaternion elements pk and rk. This variant
of the chord-based QFA problem thus falls into the same category as the standard RMSD problem, and permits the
application of the same exact solution (or, indeed, the traditional numerical solution method if that is more efficient).
The profile matrix equation is unwieldy to write down explicitly in terms of the quaternion elements quartic in {p, r},
but we actually have several options for expressing the content in a simpler form. One is to write the matrices in
abstract canonical 3 × 3 form, e.g.,

R(p) = [P] =

⎡
⎣ pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

⎤
⎦ , (83)

where the columns of this matrix are just the three axes of each data element’s frame triad. This is often exactly what
our original data look like, for example, if the residue orientation frames of a protein are computed from cross-products
of atom-atom vectors (Hanson & Thakur, 2012). Then we can define for each data element the 3 × 3 matrix

[Tk] = R(pk) · R(r̄k)] = R(pk � r̄k) = R−1(tk) ,

so we can write T either in terms of a 3×3 matrix like Eq. (83) derived from the actual frame-column data, or in terms
of Eq. (6) and the quaternion frame data tk = rk � p̄k. We then may write the frame measure in general as

ΔRRR =

N∑
k=1

tr (R(q) · Tk) =

3∑
a=1,b=1

Rba(q)Tab , (84)

where the frame-based cross-covariance matrix is simply Tab =
∑N

k=1 [Tk]ab. As before, we can easily expand R(q)
using Eq. (6) to convert the measure to a 4D linear algebra problem of the form

ΔRRR =

3∑
a=0,b=0

qa ·Uab(p, r) · qb = q ·U(p, r) · q . (85)

Here U(p, r) = U(T ) has the same relation to T as M(E) does to E in Eq. (21). We may choose to write the profile
matrix U =

∑
k Uk appearing in ΔRRR either in terms of the individual k-th components of the numerical 3D rotation

matrix T = R−1(t) or using the composite quaternion t = r � p̄ :

Uk(T ) ≡ U(tk)

=

⎡
⎢⎢⎣

Txx + Tyy + Tzz Tyz − Tzy Tzx − Txz Txy − Tyx

Tyz − Tzy Txx − Tyy − Tzz Txy + Tyx Txz + Tzx

Tzx − Txz Txy + Tyx −Txx + Tyy − Tzz Tyz + Tzy

Txy − Tyx Txz + Tzx Tyz + Tzy −Txx − Tyy + Tzz

⎤
⎥⎥⎦

k

(86)

=

⎡
⎢⎢⎣

3t02 − t12 − t22 − t32 4t0t1 4t0t2 4t0t3
4t0t1 −t02 + 3t12 − t22 − t32 4t1t2 4t1t3
4t0t2 4t1t2 −t02 − t12 + 3t22 − t32 4t2t3
4t0t3 4t1t3 4t2t3 −t02 − t12 − t22 + 3t32

⎤
⎥⎥⎦

k

. (87)
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Both Eq. (86) and Eq. (87) are quartic (and identical) when expanded in terms of the quaternion data {pk, rk}. To
compute the necessary 4 × 4 numerical profile matrix U , one need only substitute the appropriate 3D frame triads or
their corresponding quaternions for the kth frame pair and sum over k . Since the orientation-frame profile matrix U is
symmetric and traceless just like the Euclidean profile matrix M, the same solution methods for the optimal quaternion
rotation qopt will work without alteration in this case, which is probably the preferable method for the general problem.

Evaluation. The details of evaluating the properties of our quaternion-frame alignment algorithms, and especially
comparing the chord approximation to the arc-length measure, are tedious and are available separately in Section 6.
The top-level result is that, even for quite large rotational differences, the mean differences between the arc-length
measure’s numerical optimal angle and the various chord approximations are on the order of a fraction of a degree.

3.2. The 4D Orientation-Frame alignment Problem

Orientation frames in four dimensions have axes that are the columns of a 4D rotation matrix taking the identity
frame to the new orientation frame. Therefore, in parallel with the 3D case, such frames can be represented either as 4D
rotation matrices (the action on a 4D identity frame to get a new set of 4 orthogonal axes), or as the pair of quaternions
(q, q′) used in Eq. (15) to define R4(q, q′). As in the 3D frame case, we will take advantage of the chord-distance
linearization of the geodesic angular measure, and we shall present two alternative approaches to the optimization
measure.

Quadratic Form. In 3D, with Eq. (68) having a single quaternion involved in the rotation, we were able to write
down Δchord in terms of a simple expression linear in the quaternion q and the cumulative data V , and we observed

that a quadratic expression (q ·V )
2 would also produce the same optimal eigenvector q = V /‖V‖. The optimal frame

problem in 4D, in contrast, already requires a pair of quaternions, and one strategy is to split the analogs of the 3D
quadratic expression into two parts, yielding

Δ4:chord-sq(q, q′) = (q ·V ) (q′ ·V ′) = qa (VaV
′
b) q′

b = q · Ω4 · q′ (88)

as the generalization from 3D to 4D. Here, each 4D test frame consists of frames denoted by the quaternion pair
(p, p′), and each reference frame employs a pair (r, r′), so we build the data coefficients starting from

V =

N∑
k=1

(rk � p̄k) =
∑N

k=1 tk

V ′ =

N∑
k=1

(r′k � p̄′
k) =

∑N
k=1 t ′k

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(89)

and then applying the transformation

tk → ∼
t k = tk sign(q · tk)

t ′k →
∼
t ′k = t ′k sign(q′ · t ′k)

⎫⎬
⎭ (90)

to achieve consistent (local) signs. According to Eq. (74), V could also be constructed from Wab =
∑N

k=1[
∼
pk]a [rk]b ,

and V ′ from W ′
ab =

∑N
k=1[

∼
p′

k]a [r′k]b , noting that here p is transformed by the “tilde” of Eq. (90). Now, for the 4D
frame pairs, the solution for the optimal quaternions must achieve the maximum for both elements of the pair, and so
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we obtain as a solution maximizing Eq. (88)

qopt =
V
‖V‖

q′
opt =

V ′

‖V ′‖
Δ4:chord-sq(opt) = ‖V‖‖V ′‖

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (91)

Remark: There is a particular reason to prefer Eq. (88) for the 4D orientation frame problem: in the next section,
we will see that the separate pre-summation arguments for V and V ′, gathered together, are exactly equal to the
joint summand of the 4D triple rotation pre-summation arguments, following the pattern seen in Eq. (80) for the 3D
orientation-frame analysis.

Quartic Triple Rotation Form. One can also eliminate the sign choice step altogether by defining a 4D frame
similarity measure that is the exact analog of Eq. (79) in 3D as follows:

ΔRRR4 =

N∑
k=1

tr
[
R(q, q′) · R(pk, p′

k) · R−1(rk, r′k)
]

(92)

=

N∑
k=1

tr [R(q, q′) · R(pk � r̄k, p′
k � r̄′k)] (93)

=
N∑

k=1

tr
[
R(q, q′) · R−1(tk, t ′k)

]
(94)

= q ·U(p, p′; r, r′) · q′ . (95)

Remarkably, there is a 4D version of the 3D identity Eq. (80) relating the triple rotation measure to the quadratic
realizations of the linear quaternion rotation measures, namely

N∑
k=1

tr [R(q, q′) · R(pk, p′
k) · R(r̄k, r̄′k)] = 4

N∑
k=1

((q � pk) · rk) ((q′ � p′
k) · r′k)

= 4
N∑

k=1

(q · (rk � p̄k)) (q′ · (r′k � p̄′
k))

= 4
N∑

k=1

(q · tk)(q′ · t ′k)

= 4
∑
a,b

qa

(
N∑

k=1

[tk]a [t ′k]b

)
q′

b

= 4 q · A(t = r � p̄, t ′ = r′ � p̄′) · q′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (96)

Thus the pre-summation version of the arguments in the (q · V )(q′ · V ′) version of the 4D chord measure turns out
to be exactly the same as the triple-matrix product measure summand without the additional trace term that is present
in 3D. Furthermore, as long as one follows the rules of changing both the primed and unprimed signs together (the
condition for R4(q, q′)’s invariance), this measure is sign-independent. The 4×4 matrix A(t, t ′) is the 4D profile matrix
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equivalent to that of (Markley et al., 2007; Hartley et al., 2013) for the 3D chord-based quaternion-averaging problem.
We can therefore use either the measure ΔRRR4 or

ΔA4 = q · A(t, t ′) · q′ (97)

with A(t, t ′)ab =
∑N

k=1[tk]a [t ′k]b as our rotation-matrix-based sign-insensitive chord-distance optimization measure.
To get an expression in terms of R, we now use Eq. (15) for R(q, q′) to decompose the measure Eq. (93) into the

rotation-averaging form

ΔRRR4 = tr [R(q, q′) · T (p, p′; r, r′)] (98)

= q ·U(T ) · q′ , (99)

where T (p, p′; r, r′) =
∑N

k=1 R−1(tk, t ′k) and U(T ) has the same relationship to T as the 4D profile matrix M(E) in
Eq. (26) does to the cross-correlation matrix E . In the next section, we will see that the singleton version of this map
is unusually degenerate, with rank one, though that feature does not persist for data sets with N > 1.

Now, as in the 4D spatial RMSD analysis, we might naturally assume that we could follow the 3D case by deter-
mining the maximal eigenvalue ε0 of U and its left and right eigenvectors qλ and qρ, which would give

ΔRRR4

?
= qλ ·U · qρ = (qλ · qρ) ε0 .

As before, this is not a maximal value for the measure ΔRRR4 over the possible range of R(q, q′). To solve the optimiza-
tion correctly, we must again be very careful, and work with the maximal eigenvalue α(RRR4:opt) of G = U T ·U and
G′ = U ·U T, which we can get numerically as usual, or algebraically from the quartic solution for the eigenvalues for
symmetric 4 × 4 matrices with a trace, yielding

ΔRRR4(opt) =
√

max eigenvalue (U T ·U) =
√
α(RRR4:opt) .

If we need the actual optimal rotation matrix solving

ΔRRR4(opt) = tr
(

R4(qopt, q′
opt) · S

)
= qopt ·U · q′

opt =
√

α(RRR4:opt) ,

then we just use our optimal eigenvalue to solve

(G − α(RRR4:opt)I4) · q = 0

(G′ − α(RRR4:opt)I4) · q′ = 0

for qopt and q′
opt, or use the equivalent adjugate-column method to extract the eigenvectors. That gives the desired 4D

rotation matrix R4(qopt, q′
opt) explicitly via Eq. (15). The same approach applies to the solution of ΔA4 = q ·A(t, t ′)·q′,

Note that this can all be accomplished numerically, directly as above or with Singular Value Decomposition, or using
the quaternion eigenvalue decomposition on the symmetric matrices either numerically or algebraically,
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4. On Obtaining Quaternions and Quaternion Pairs from 3D and 4D Rotation Matrices

4.1. Extracting a Quaternion from 3D Rotation Matrices

The quaternion RMSD profile matrix method can be used to implement a singularity-free algorithm to obtain
the (sign-ambiguous) quaternions corresponding to numerical 3D and 4D rotation matrices. There are many exist-
ing approaches to the 3D problem in the literature (see, e.g., (Shepperd, 1978), (Shuster & Natanson, 1993), or Section
16.1 of (Hanson, 2006)). In contrast to these approaches, Bar-Itzhack (Bar-Itzhack, 2000) has observed, in essence,
that if we simply replace the data matrix Eab by a numerical 3D orthogonal rotation matrix R, the numerical quaternion
q that corresponds to Rnumeric = R(q), as defined by Eq. (6), can be found by solving our familiar maximal quater-
nion eigenvalue problem. The initially unknown optimal matrix (technically its quaternion) computed by maximizing
the similarity measure turns out to be computable as a single-element quaternion barycenter problem. To see this,
take S(r) to be the sought-for optimal rotation matrix, with its own quaternion r, that must maximize the Bar-Itzhack
measure. We start with the Fröbenius measure describing the match of two rotation matrices corresponding to the
quaternion r for the unknown quaternion and the numeric matrix R containing the known 3 × 3 rotation matrix data:

SBI = ‖S(r)− R‖2
Frob = tr

(
[S(r)− R] · [S T(r)− R T]

)
= tr

(
I3 + I3 − 2

(
S(r) · R T))

= const − 2 tr S(r) · R T .

Pulling out the cross-term as usual and converting to a maximization problem over the unknown quaternion r, we
arrive at

ΔBI = tr S(r) · R T = r · K(R) · r , (100)

where R is (approximately) an orthogonal matrix of numerical data, and K(R) is analogous to the profile matrix M(E).
Since both S and R are SO(3) rotation matrices, so is their product T = S ·R T, and thus that product itself corresponds
to some axis n̂ and angle θ, where

tr S(r) · R T(q) = tr T (r � q̄) = tr T (θ, n̂) = 1 + 2 cos θ .

The maximum is obviously close to the ideal value θ = 0, which corresponds to S ≈ R. Thus if we find the maximal
quaternion eigenvalue εopt of the profile matrix K(R) in Eq. (100), our closest solution is well-represented by the
corresponding normalized quaternion eigenvector ropt,

q = ropt . (101)

This numerical solution for q will correspond to the targeted numerical rotation matrix, solving the problem. To
complete the details of the computation, we replace the elements Eab in Eq. (21) by a general orthonormal rotation
matrix with columns X = (x1, x2, x3), Y, and Z, scaling by 1/3, thus obtaining the special 4×4 profile matrix K whose
elements in terms of a known numerical matrix R = [X|Y|Z] (transposed in the algebraic expression for K due to the
R T in ΔBI) are

K(R) =
1
3

⎡
⎢⎢⎣

x1 + y2 + z3 y3 − z2 z1 − x3 x2 − y1

y3 − z2 x1 − y2 − z3 x2 + y1 x3 + z1

z1 − x3 x2 + y1 −x1 + y2 − z3 y3 + z2

x2 − y1 x3 + z1 y3 + z2 −x1 − y2 + z3

⎤
⎥⎥⎦ . (102)
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Determining the algebraic eigensystem of Eq. (102) is a nontrivial task. However, as we know, any orthogonal 3D
rotation matrix R(q), or equivalently, R T(q) = R(q̄), can also be ideally expressed in terms of quaternions via Eq. (6),
and this yields an alternate useful algebraic form

K(q) =

1
3

⎡
⎢⎢⎣

3q0
2 − q1

2 − q2
2 − q3

2 4q0q1 4q0q2 4q0q3

4q0q1 −q0
2 + 3q1

2 − q2
2 − q3

2 4q1q2 4q1q3

4q0q2 4q1q2 −q0
2 − q1

2 + 3q2
2 − q3

2 4q2q3

4q0q3 4q1q3 4q2q3 −q0
2 − q1

2 − q2
2 + 3q3

2

⎤
⎥⎥⎦(103)

This equation then allows us to quickly prove that K has the correct properties to solve for the appropriate quaternion
corresponding to R. First we note that the coefficients pn of the eigensystem are simply constants,

p1 = 0 p2 = − 2
3 p3 = − 8

27 p4 = − 1
27 .

Computing the eigenvalues and eigenvectors using the symbolic quaternion form, we see that the eigenvalues are
constant, with maximal eigenvalue exactly one, and the eigenvectors are almost trivial, with the maximal eigenvector
being the quaternion q that corresponds to the (numerical) rotation matrix:

ε = {1, −1
3
, −1

3
, −1

3
} (104)

r =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q1

q0

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q2

0
q0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q3

0
0
q0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (105)

The first column is the quaternion ropt, with ΔBI(ropt) = 1. (This would be 3 if we had not divided by 3 in the
definition of K.)

Alternate version. From the quaternion barycenter work of Markley et al. (Markley et al., 2007), we know that
Eq. (103) actually has a much simpler form with the same unit eigenvalue and natural quaternion eigenvector. (This
form appears naturally below in the 4D extension of the Bar-Itzhack algorithm.) If we simply take Eq. (103) multiplied
by 3, add the constant term I4 = (q0

2 + q1
2 + q2

2 + q3
2)I4 , and divide by 4, we get a more compact quaternion form

of the matrix, namely

K′(q) =

⎡
⎢⎢⎣

q0
2 q0q1 q0q2 q0q3

q0q1 q1
2 q1q2 q1q3

q0q2 q1q2 q2
2 q2q3

q0q3 q1q3 q2q3 q3
2

⎤
⎥⎥⎦ . (106)

This has vanishing determinant and trace tr K′ = 1 = −p1, with all other pk coefficients vanishing, and eigensystem
with eigenvalues identical to Eq. (103):

ε = {1, 0, 0, 0} (107)

r =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q1

q0

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q2

0
q0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q3

0
0
q0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (108)

As elegant as this is, in practice, our numerical input data are from the 3 × 3 matrix R itself, and not the quaternions,
so we will almost always just use those numbers in Eq. (102) to solve the problem.
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Completing the solution. In typical applications, the solution is immediate, requiring only trivial algebra. The
maximal eigenvalue is always known in advance to be unity for any valid rotation matrix, so we need only to compute
the eigenvector from the numerical matrix Eq. (102) with unit eigenvalue. We simply compute any column of the
adjugate matrix of K(R)− I4, or solve the equivalent linear equations of the form

(K(R)− 1 ∗ I4) ·

⎡
⎢⎢⎣

1
v1

v2

v3

⎤
⎥⎥⎦ = 0 q = ropt = normalize

⎡
⎢⎢⎣

1
v1

v2

v3

⎤
⎥⎥⎦ . (109)

As always, one may need to check for degenerate special cases.

Non-ideal cases. It is important to note, as emphasized by Bar-Itzhack, that if there are significant errors in the
numerical matrix R, then the actual non-unit maximal eigenvalue of K(R) can be computed numerically or alge-
braically as usual, and then that eigenvalue’s eigenvector determines the closest normalized quaternion to the errorful
rotation matrix, which can be very useful since such a quaternion always produces a valid rotation matrix.

In any case, up to an overall sign, ropt is the desired numerical quaternion q corresponding to the target numerical
rotation matrix R = R(q) . In some circumstances, one is looking for a uniform statistical distribution of quaternions,
in which case the overall sign of q should be chosen randomly.

The Bar-Itzhack approach solves the problem of extracting the quaternion of an arbitrary numerical 3D rotation
matrix in a fashion that involves no singularities and only trivial testing for special cases, thus essentially making the
traditional methods obsolete.

4.2. Extracting Quaternion Pairs from 4D Rotation Matrices

We know from Eq. (15) that any 4D orthogonal matrix R4(p, q) can be expressed as a quadratic form in two inde-
pendent unit quaternions. This is a consequence of the fact that the 6-parameter orthogonal group SO(4) is double
covered by the composition of two smaller 3-parameter unitary groups, that is SU(2) × SU(2); the group SU(2) has
essentially the same properties as a single quaternion, so it is not surprising that SO(4) should be related to a pair of
quaternions.

We begin our treatment of the 4D case by extending Eq. (100) to 4D with a numerical SO(4) matrix R4, giving us a
Bar-Itzhack measure to maximize of the form

Δ4:BI = tr S(�, r) · R4
T = � · K4(R4) · r = � · K4(p, q) · r . (110)

Here (�, r) are the left and right quaternions over which we are varying the measure, and K4(R4) is the 4D gen-
eralization of Eq. (102). To compute K4(R4), we define a general 4D orthonormal rotation matrix with columns
W = (w0,w1,w2,w3), etc., so the matrix takes the form R4 = [W|X|Y|Z], producing a numerical profile matrix
of the form (taking into account the transpose in Eq. (110))

K4(R4) =
1
4

⎡
⎢⎢⎣

w0 + x1 + y2 + z3 −w1 + x0 + y3 − z2 −w2 − x3 + y0 + z1 −w3 + x2 − y1 + z0

w1 − x0 + y3 − z2 w0 + x1 − y2 − z3 −w3 + x2 + y1 − z0 w2 + x3 + y0 + z1

w2 − x3 − y0 + z1 w3 + x2 + y1 + z0 w0 − x1 + y2 − z3 −w1 − x0 + y3 + z2

w3 + x2 − y1 − z0 −w2 + x3 − y0 + z1 w1 + x0 + y3 + z2 w0 − x1 − y2 + z3

⎤
⎥⎥⎦ . (111)

Now, from Eq. (15), we know that we also have an analog to Eq. (103), and for R4(p, q) this takes the remarkably
compact algebraic form

K4(p, q) =

⎡
⎢⎢⎣

p0q0 p0q1 p0q2 p0q3

p1q0 p1q1 p1q2 p1q3

p2q0 p2q1 p2q2 p2q3

p3q0 p3q1 p3q2 p3q3

⎤
⎥⎥⎦ . (112)
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We see that Eq. (112) is exactly the outer product of p and q, with vanishing determinant, rank one, and a lone
eigenvalue equal to its trace (p · q). Its deceptively beautiful simple eigensystem is

ε = {p · q, 0, 0, 0} (113)

rright =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

p0

p1

p2

p3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q1

q0

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q2

0
q0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−q3

0
0
q0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (114)

�left =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−p1

p0

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−p2

0
p0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−p3

0
0
p0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (115)

However, we have seen this before in Section 2: the maximal eigensystems of non-symmetric 4D matrices are not
optimal. We can in fact see that Eqs. (114) and (115) give Δ4:BI = (p · q)2, whereas we know that ideally we must
have a value that corresponds to the identity matrix, or eigenvalue unity. That is, the right and left eigenvectors in Eqs.
(114) and (115) appear to be reversed.

The key to fixing this is now familiar: we must construct the symmetric matrices

G(p, q) = K T
4 · K4 =

⎡
⎢⎢⎣

q0
2 q0q1 q0q2 q0q3

q0q1 q1
2 q1q2 q1q3

q0q2 q1q2 q2
2 q2q3

q0q3 q1q3 q2q3 q3
2

⎤
⎥⎥⎦ , G′(p, q) = K4 · K T

4 =

⎡
⎢⎢⎣

p0
2 p0 p1 p0 p2 p0 p3

p0 p1 p1
2 p1 p2 p1 p3

p0 p2 p1 p2 p2
2 p2 p3

p0 p3 p1 p3 p2 p3 p3
2

⎤
⎥⎥⎦ .

(116)

These both have a lone eigenvalue equal to one, that is ε = tr G = tr G′ = 1, and eigenvectors that are the reverse of
Eqs. (114) and (115), that is

rright = q

�left = p

}
. (117)

Note: One can easily see the subtle emergence of the eigensystems of G and G′ from the following calculation:

G · q = K T
4 · K4 · q = K T

4 · (q · q)p = (p · p)(q · q)q = q
G′ · p = K4 · K T

4 · p = K4 · (p · p)q = (q · q)(p · p)p = p
.

So q and p are clearly the right and left quaternion vectors that maximize Δ4:BI, with eigenvalue unity, always greater
than or equal to the false candidate eigenvalue (p · q).

To solve the problem, we thus use our numerical data, e.g., the 4D rotation matrix data in Eq. (111), and compute
the right and left normalized numerical eigenvectors q and p from G and G′, respectively, assuming eigenvalue equal
to one, and use those to optimally describe R4(p, q). Again, if a statistical distribution in the double quaternion space
is desired, the signs can be chosen randomly, consistent with the sign of tr K4(R4). Explicitly, we can either use
any (normalized) adjugate column or just solve some permutation of the following linear equations directly for the
eigenvectors. No further computation is required.

(G(R)− 1 ∗ I4) ·

⎡
⎢⎢⎣

1
v1

v2

v3

⎤
⎥⎥⎦ = 0 ropt = q = normalize

⎡
⎢⎢⎣

1
v1

v2

v3

⎤
⎥⎥⎦ (118)
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(G′(R)− 1 ∗ I4) ·

⎡
⎢⎢⎣

1
v′1
v′2
v′3

⎤
⎥⎥⎦ = 0 �opt = p = normalize

⎡
⎢⎢⎣

1
v′1
v′2
v′3

⎤
⎥⎥⎦ . (119)

The solution to our problem is thus R4(p, q) = R4(�opt, ropt). As in 3D, if the numerical matrix R4 has some moderate
errors and the numerical maximum eigenvalues of (G,G′) differ significantly from unity, we can solve for the actual
maximal eigenvalues and insert those into Eqs. (118) and (119) to find the left and right eigenvectors numerically.

There is one important caveat: the 3D quaternion rotation R3(q) does not care what the sign of q is, but the 4D
quaternion rotation R4(p, q) is only invariant under both p → −p and q → −q in tandem. To ensure that R4(p, q)
is the same matrix, the signs of the quaternions must be adjusted after the initial computation so that the sign of
(�opt · ropt) matches the sign of the numerical input value of R4(1,1) = tr K4(R4), which corresponds in the ideal case
to p · q. That guarantees that the solution describes the same matrix that we used as input, and not its negative.

5. Two-Dimensional Limit of 3D Problem

All rotations of the type we have been trying to optimize reduce to a rotation in a 2D plane, which in 3D is defined by
the plane perpendicular to the eigenvector n̂ of the rotation matrix Eq. (6). Data sets that are highly linear, determining
a robust straight line from least squares, can even circumvent the RMSD problem entirely: a very good rotation matrix
can be calculated from the direction x̂ determined by the line fitted to the data set {xi}, and the similar direction ŷ
corresponding to the reference data set {yi}. An optimal rotation matrix in 3D is then simply

R(θ, n̂) = R(arccos (x̂ · ŷ), ̂x̂ × ŷ) , (120)

which is easily generalized to any dimension by isolating just the projections of vectors to the plane determined by x̂
and ŷ, and rotating in that 2D basis. Thus we conclude that, in general, if we had access to a prescient preconditioning
rotation of the proper form, the entire RMSD problem would reduce to a very simple rotation in some 2D plane
parameterized by a single angle. We can simulate this, giving a massively simpler set of expressions, by assuming the
data are coplanar, all having z = 0 (or more conditions in higher dimensions) and thus lying in the canonical {x̂, ŷ}
plane, for example. This reduces our fundamental RMSD profile matrix Eq. (21) for M to

Mz=0 =

⎡
⎢⎢⎣

d 0 0 c
0 D C 0
0 C −D 0
c 0 0 −d

⎤
⎥⎥⎦ , (121)

where d = Exx + Eyy, D = Exx − Eyy, c = Exy − Eyx, and C = Exy + Eyx. Then p2 = −c2 −C2 − d2 − D2, p3 = 0,
and p4 = (c2 + d2)(C2 + D2), and similarly for the other cyclic cases, x = 0 and y = 0. The p2 and p4 are obviously
functions of only two variables, u = c2 + d2 and v = C2 + D2, so we can write in general p2 = −u − v and p4 = uv.
The eigenvalue equation det[M − eI4] = e4 + e3 p1 + e2 p2 + ep3 + p4 = 0 reduces to e4 + e2 p2 + p4 = 0 and the
eigenvalues become ε = (

√
u,
√

v,−√
v,−√

u ), while, as an initial form, we may write the normalized (quaternion)
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eigenvectors as

q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

d+
√

u√
c2+(d+

√
u)

2

0
0
c√

c2+(d+
√

u)
2

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0
D+

√
v√

C2+(D+
√

v)2

C√
C2+(D+

√
v)2

0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0
D−√

v√
C2+(D−√

v)2

C√
C2+(D−√

v)2

0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

d−√
u√

c2+(d−√
u)

2

0
0
c√

c2+(d−√
u)

2

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (122)

However, there is an important simplification that can be made; we observe that we can write the 2D part of the leading
eigenvector (the one of interest to the optimization problem with largest eigenvalue ε =

√
u) as

q =

⎡
⎢⎣

√√
u+d

2
√

u

sign c
√√

u−d
2
√

u

⎤
⎥⎦ =

[
a

b

]
=

[
cos(θ/2)

sin(θ/2)

]
. (123)

(Note that the (sign c) coefficient, a remnant of the c appearing in Eq. (122), is absolutely essential, and the eigenvalue
equations are not satisfied without it.) The leading quaternion eigenvalue then corresponds, using the 2D limit of
Eq. (6), to the optimal rotation in the {x̂, ŷ} plane given by

R2 =

⎡
⎣ d√

u
− c√

u

c√
u

d√
u

⎤
⎦ =

[
a2 − b2 −2ab

2ab a2 − b2

]
=

[
cos θ − sin θ
sin θ cos θ

]
. (124)

Yet Another Form. However, we have neglected something. How does this look if we simply go back to the data

matrices for 2D? Let us first write down the 2D version of Eq. (17), taking Eab =
∑N

k=1[xk]a [yk]b for a, b = {1, 2}.
Let us assume that we do not yet know the solution for θ given in Eq. (124) above, so the raw form for the spatial
RMSD task is to determine the unknown rotation matrix

R2(θ) =

[
cos θ − sin θ
sin θ cos θ

]

starting from the 2D cross-covariance data Eab, maximizing

Δ2 =
∑N

k=1 (R2 · xk) · yk =
∑2

a=1,b=1 R2
baEab = (Exx + Eyy) cos θ + (Exy − Eyx) sin θ

= d cos θ + c sin θ
. (125)

We can either differentiate with respect to θ and set Δ′
2(θ) = 0, or simply observe directly that Δ2(θ) is largest when

the vector (cos θ, sin θ) is parallel to its coefficients; both arguments lead to the solution

tan θ =
Exy − Eyx

Exx + Eyy
=

c
d

(126)

(cos θ, sin θ) =

(
d√

c2 + d2
,

c√
c2 + d2

)
, (127)

where of course
√

c2 + d2 =
√

u, in agreement with Eq. (124), and Δ2:opt = (d2 + c2)/
√

u =
√

u. All of this is of
course exactly equivalent to our initial quaternion 2D limit with the profile matrix

M2 =

[
d c
c −d

]
, (128)
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its leading eigenvalue ε =
√

c2 + d2 =
√

u, and the optimal eigenvector (a, b) given in Eq. (123), yielding

Δ2:opt =
[

a b
] · M2 ·

[
a
b

]
. =

√
u (129)

These results are interesting to study because, despite the complexity of the general solution, the intrinsic algebraic
structure of any RMSD problem is entirely characterized by a planar rotation such as that described by Eq. (124).

6. Evaluating the 3D Orientation Frame Solution.
The validity of our approximate chord-measures for determining the optimal global frame rotation can be evaluated
by comparing their outcomes to the precise geodesic arc-length measure of Eq. (61). The latter is tricky to optimize,
but choosing appropriate techniques, e.g., in the Mathematica FindMinimum[ ] utility, it is possible to determine good
numerical solutions without writing custom code; in our experiments, fluctuations due to numerical precision limita-
tions were noticeable, but presumably conventional conditioning techniques, which we have not attempted to explore,
could improve that significantly. We employed a collection of 1000 simulated quaternion data sets of length 100 for
the reference cases, then imposed a normal distribution of random noise on the reference data, followed by a global
rotation of all those noisy data points distributed around 45◦ to produce a corresponding collection of corresponding
quaternion test data sets to be aligned. (Observe that we do not expect the optimal rotation angles to match the exact
global rotations, though they will be nearby.)

We then collected the optimal quaternions for the following cases:
(a) Arc-Length (numerical). This is the “gold standard,” modulo the occasional data pair that seems to challenge

the numerical stability of the computation (which was to be expected). We obtained the data set (a) of quaternions
that numerically minimized the nonlinear geodesic arc-length-squared measure of Eq. (61); this is in principle
the best estimate one can possibly get for the optimal quaternion rotations to align a set of 3D test-frame triads
with a corresponding set of reference-frame triads. There is no known way to find this set of optimal quaternions
using our linear algebra methods.

(b) Chord-Length (numerical and algebraic). This approach, designated as the data set (b), is based on the
approximation to Eq. (17) illustrated in Fig 1 , replacing the arc-length by the chord-length, which amounts
to removing the arccosine and using the effective maximal cosines (t →∼

t ) to define the measure. The form
given in Eq. (71) is a minimization problem that is exactly the quaternion analog of the RMSD problem def-
inition in Eq. (17) for spatial data, with the additional constraint that all the spatial data must be unit-length
4-vectors (which have only 3 degrees of freedom) instead of arbitrary 3-vectors. In addition, the convergence
condition for clustering of the data within the ball should in principle be satisfied for the optimal solution of
Eq. (71) to be global; our data simulation pushes these limits, but in practice the convergence is typically sat-
isfied. Just as Eq. (17) and its cross-term form Eq. (18) give exactly the same results for spatial data when the
measures are minimized and maximized, respectively, the orientation-problem equations Eq. (71) and Eq. (72)
do the same for the quaternion measure. Finally, the two cross-term forms Eq. (73) and Eq. (76) give the same
optimal quaternions, with the interesting fact that Eq. (73) yields the optimal quaternion from a linear equation,
and Eq. (76) gives an identical result from a quadratic matrix equation that works the same way as the RMSD
matrix optimization, except that the symmetric profile matrix is no longer traceless.
Thus there are in fact four ways of looking at the chord-length measure and obtaining exactly the same optimal
quaternions, and we have checked these using two numerical optimizations and two algebraic optimizations.
These options are:
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– Minimizing Euclidean Chord-Length Squared. Here we write the chord-approximation to the QFA
problem using Eq. (71), which is exactly parallel to the RMSD problem employing Eq. (17), modulo the
sign ambiguity issue. We test this by performing a numerical minimization.

– Maximizing Chord-Length Cross-Term. Just as the RMSD cross-term maximization problem Eq. (18)
is equivalent to the RMSD minimization problem of Eq. (17), we can use maximization of the quater-
nion cross-term Eq. (72) equivalently with the minimization of the chord-length Eq. (71). We test this by
performing a numerical maximization.

– Linear Reduction of Chord-Length Cross-Term. Pulling out the linear coefficients of the each quater-
nion component in Eq. (72) generates Eq. (73), where the 4-vector Va(W ) of Eq. (74) plays the role of the
RMSD profile matrix Mab(E) in Eq. (20). Here we test the optimization by algebraically solving the linear
expression Eq. (73).

– Quadratic Equivalent Matrix Form of the Chord-Length Cross-Term. Finally, there is in fact a max-
imal matrix eigenvalue problem Eq. (76) that works like Eq. (20) by squaring Eq. (73) to get a matrix
problem q · Ω · q with Ωab = VaVb. Despite the presence of a nonvanishing trace, the maximal quater-
nion eigenvectors are the same as the other three cases above. This produces the same optimal quaternion
solutions as solving the (much, much simpler) linear problem of Eq. (73). This can also be checked alge-
braically.

(c) (tr R(q) · R(p) · R(r̄)) Chord-Length (algebraic). Finally, the most rigorous method if consistency of quater-
nion signs cannot be guaranteed is to use a measure in which algebraic squares occur throughout and enforce rig-
orous sign-independence. This is our (c) data set. Such measures must of necessity be quartic in the quaternion
test and reference data, and thus are distinct from the measures of (b) that are quadratic in the data elements. This
(tr R(q) ·R(p) ·R(r̄)) measure is the form that is most easily integrated into the combined rotational-translational
problem treated in the next section, because the combined matrices are both symmetric and traceless like the
original RMSD profile matrices. Furthermore, it is obvious from Eq. (80) that this measure is exactly the same
as the one obtained from Eq. (72) if we squared each term in k before summing the cross-term data elements in
option (b). Thus, whichever actual formula we choose, we appear to have exhausted the options for quaternion-
sign-independent quartic measures for the orientation data problem.

The task now is simply to evaluate how close the optimal quaternion solutions for the arc-length measure (a) are to
the quadratic chord-length measures (b) and the quartic chord-length measures (c). In addition, we would like to know
how close the fragile but very elegant quadratic measures (b) are to the rigorously sign-insensitive quartic measures
(c); we expect them to be similar, but we do not expect them to be identical.
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Figure 2
Spectrum in degrees of angular differences between optimal quaternion alignment rotations for quaternion frames. (a:b): (a) vs (b), true arc-length
vs approximate quadratic chord-length measure. (a:c): (a) vs (c), true arc-length vs approximate quartic chord-length measure. (b:c): (b) vs (c),
approximate quadratic vs approximate quartic chord-length measure.

To quantify the closeness of the measures, we took the magnitude of the inner products between competing optimal
quaternions for the same data set, which is essentially a cosine measure, took the arccosines, and converted to degrees.
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The results were histogrammed for 1000 random samples consisting of N = 100 data points, and are presented in
Fig 2. The means and standard deviations of the optimal total rotations relative to the identity frame for the three cases
are:

Measure Type Mean(deg) Std Dev(deg)
(a) arc-length 44.8062 11.2307
(b) chord quadratic 44.8063 11.2308
(c) chord quartic 44.8065 11.2310

.

One can see that our simulated data set involved a large range of global rotations, and that all three methods produced
a set of rotations back to the optimal alignment that are not significantly different statistically. We thus expect very
little difference in the histograms of the case-by-case optimal quaternions produced by the three methods. The mean
differences illustrated in the Figures are summarized as follows:

Figure:(Pair) Mean(deg) Std Dev(deg)
Figure 2 (a:b) 0.0021268 0.0011284
Figure 2 (a:c) 0.0084807 0.0044809
Figure 2 (b:c) 0.0063539 0.0033526

.

We emphasize that these numbers are in degrees for 1000 simulated samples with a distribution of global angles having
a standard deviation of 11◦. Thus we should have no issues using the chord approximation, though it does seem that
the q ·V measure is significantly better both in accuracy and simplicity of computation.

7. The 3D Combined Point+Frame Alignment Problem.

The 3D combined alignment problem for both spatial data and orientation-frame data involves a number of issues and
subtleties that we were able to treat only superficially in the main text. In this section, we explore various options and
evaluate their performance. This is necessary for anyone who might think of trying to attempt a combined alignment
problem, so we have attempted to anticipate the questions and alternatives that might be explored and check their
properties. The overall result is that it seems difficult to obtain significant additional information from the combined
alignment strategies that we examined, so potential exploiters of this paradigm are forewarned.

From the main text, we are in possession of precise alignment procedures for both 3D spatial coordinates and 3D
frame triad data (using the exact measure for the former and one of the approximate chord measures for the latter),
and thus we can consider the full 6 degree-of-freedom alignment problem for combined data from a single structure.
In fact this problem can also be solved in closed algebraic form given the our existing eigensystem formulation of the
orientation alignment problem. While there are clearly appropriate domains of this type, e.g., any protein structure in
the PDB database can be converted to a list of residue centers and their local frame triads (Hanson & Thakur, 2012),
little is known at this time about the potential value of combined alignment. To establish the most complete possible
picture, we now proceed to describe the details of our solution to the alignment problem for combined translational
and rotational data.

In our treatment, we will assume the ΔRRR measure since its profile matrix is traceless and manifestly independent
of the quaternion signs, but there is no obstacle to using Δframe-sq if the data are properly prepared and one prefers
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the simpler measure. For notational simplicity, we will let Δ f stand for whatever orientation frame measure we have
chosen, corresponding to Δx for the spatial measure, and thus we will denote the combined measure by Δx f .

The Combined Optimization Measure. A significant aspect of establishing a combined measure including the
point measure Δx and the frame orientation measure Δ f is the fact that the measures are dimensionally incompatible.
We cannot directly combine the corresponding data minimization measures Δx(qx) = εx:max and Δ f (q f ) = ε f :max because
the spatial measure has dimensions of (length)2 and the frame measure is essentially a dimensionless trigonometric
function (the arc-distance measure produces (radians)2, which is still incompatible).

While it should be obvious that a combined measure requires an arbitrary, problem-specific, interpolating constant
with dimensions of length to produce a compatible measure, there has been some confusion in the literature. These
issues are implicitly incorporated, e.g., in the weights α and β in the error function of the dual quaternion approach
of (Walker et al., 1991) and explicitly resolved with the introduction of dimensionful constants, e.g., in the molecular
entropy work of (Fogolari et al., 2016) [see also (Huggins, 2014)]. Our approach to defining a valid heuristic combined
measure has three components:

• Normalize the Profiles. The numerical sizes of the maximal eigenvalues of the Δx and the Δ f systems can easily
differ by orders of magnitude. Since scaling the profile matrices changes the eigenvalues but not the eigenvectors,
it is perfectly legitimate to start by dividing the profiles by their maximal eigenvalues before beginning the
combined optimization, since this accomplishes the sensible effect of assigning maximal eigenvalues of exactly
unity to both of our scaled profile matrices.

• Interpolate between the Profiles. To allow an arbitrary sensible weighting distinguishing between a location-
dominated measure and an orientation-dominated measure, we simply incorporate a linear interpolation param-
eter t ∈ [0, 1], with t = 0 singling out Δx and the pure (unit eigenvalue) location-based RMSD, and t = 1
singling out Δ f and the pure orientation (unit eigenvalue) QFA solution.

• Scale the Frame Profile. Finally, we incorporate the mandatory dimensional scaling adjustment by incorporat-
ing one additional (nominally dimensional) parameter σ that scales the orientation parameter space described by
Δ f to be more or less important than the “canonical” spatial dimension component Δx, which we leave unscaled.
That is, with σ = 0 only the spatial measure survives, with σ = 1, the normalized measures have equal contri-
butions, and with σ > 1, the orientation measure dominates (this effectively undoes the original frame profile
eigenvalue scaling).

We thus start with a combined spatial-rotational measure of the form

Δinitial = (1 − t)
3∑

a=1,b=1

Rba(q)Eab + t σ
3∑

a=1,b=1

Rba(q)Sab

= (1 − t) tr (R(q) · E) + t σ tr (R(q) · S)

=

3∑
a=0,b=0

qa [(1 − t)Mab(E) + t σUab(S)] qb

= q · [(1 − t)M(E) + t σU(S)] · q , (130)

and then impose the unit-eigenvalue normalization on M(E) and U(S), giving our final measure as

Δx f (t, σ) = q ·
[
(1 − t)

M(E)
εx

+ t σ
U(S)
ε f

]
· q . (131)

Because of the dimensional incompatibility of Δx and Δ f , we have to treat the ratio

λ2 =
tσ

1 − t

S30 Hanson · Quaternion-based alignment Acta Cryst. (2020). A76, S1–S43



supporting information

as a dimensionful constant, so if t is dimensionless, then σ carries the dimensional scale information.
From the profile matrix of Eq. (131), we now extract our optimal rotation solution using the same equations as

always, solving for the maximal eigenvalue and its eigenvector either numerically or algebraically, leading to the
equivalent of Eq. (22), as we have solved the standard RMSD maximal eigenvalue problem. The result is a parameter-
ized eigensystem

εopt(t, σ)
qopt(t, σ)

}
(132)

yielding the optimal values R(qopt(t, σ)), Δx f = εopt(t, σ) based on the data {E, S} no matter what we take as the
values of the two variables (t, σ).

Properties of the Combined Optimization. Substantially different features arise in the solutions depending on how
close the optimal rotations were for the initial, separate, systems Δx and Δ f . We now choose a selection of simulated
data sets with the following choices of approximate initial global rotations of the test data sets relative to the reference
data:

Table 1
Offsets of sample data for the spatial vs orientation data used in exploring the properties of combined measures.

DATA ID (Space, Orientation) Measured Offset
Data Set 1 (22◦,−22◦) 44.60
Data Set 2 (22◦,−11◦) 21.98
Data Set 3 (22◦, 0◦) 11.15
Data Set 4 (22◦, 11◦) 11.15
Data Set 5 (22◦, 21◦) 1.20

In Fig 3, we plot the trajectory of the maximal combined similarity measure for Data Set 1 as a function of t, showing
the behavior for σ = 1.0, 0.80, and 1.15. Figure 4 shows a more comprehensive representation of the continuous
behavior with σ, and in both figures, we see that the true optima are at the end points, t = 0, 1, the locations associated
with the pure profile eigenvector solutions qx(opt) and q f (opt). There is no better optimal eigenvector (i.e., global
rotation) for any intermediate value of t. In some circumstances, however, it might be argued that it is appropriate to
choose the distinguished value of t at the minimum of the curve Δx f (t, σ = 1). As we shall see in a moment, just as
in Fig 3 for σ = 1, this point is generally within a few percent of t = 0.5. As the spatial and orientation optima get
closer and closer, the curves in t become much flatter and less distinguished, while the variation in σ is qualitatively
the same as in Fig 4 .

Finally, we examine one more amusing visualization of the properties of the composite solutions, restricting our-
selves to σ = 1 for simplicity, and examining the “sideways warp” in the quaternion eigenvector qopt(t, σ = 1) in
Eq. (132). We examine what happens to the combined similarity measure Eq. (131) if we smoothly interpolate from the
identity matrix (that is, the quaternion qID = (1, 0, 0, 0)) through the optimal solution for each t and beyond the opti-
mum by the same amount, using the slerp interpolation defined in Eq. (13), i.e., q(s) = slerp(qID, qopt(t, σ = 1), s).
Figure 5 shows Data Set 1, with the largest relative spatial vs orientation angular differences, Figure 6 corresponds to
the intervening Data Sets 2, 3, 4, and 5, with the Data Set parameters given above in Table 1. Data Set 5 in particular is
perhaps the most realistic example, having nearly identical spatial and angular rotations, and we see negligible differ-
ences between the spatial and angular structures. These graphics also show how the local, non-optimal, neighboring
quaternion values peak in s at the optimal ridge going from t = 0 to t = 1. The red dot is the maximum of Δx at t = 0,
the green dot is the maximum of Δ f at t = 1, and the blue dot, specific to each data set, is the distinguished point at the
minimum of Δx f (t, σ = 1) in t, which for our data sets are always within 1% of t = 0.5. We observe that for equal and
opposite rotations, the midpoint coincides almost exactly with the identity quaternion that occurs at the left and right
boundaries of the plot. In other respects, the data in these figures show that we do not have maxima in the middle of
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the interpolation in t, but we do have a distinguished value, always very near t = 0.5, that could be used as a baseline
for a hybrid translational-rotational rotation choice.

0.2 0.4 0.6 0.8 1.0
t : pnt-frm mixing

0.85

0.90

0.95

1.00

1.05

1.10

1.15

max

eigenvalue

Min at t=0.49728

Frame scale=0.80

Frame scale=1.00

Frame scale=1.15

Figure 3
The blue curve is the path of the composite eigenvalue for Data Set 1 (the value of the similarity measure Δx f (t, 1)) in the interpolation variable t
with equally weighted space and orientation data, i.e., σ = 1. It has maxima only at the “pure” extremes at t = 0, 1, but there is a minimum that
occurs, for these data, not at t = 1/2, but very nearby at t = 0.49728. Increasing the influence of the spatial data by taking σ = 0.8 gives the red
curve, and increasing the influence of the orientation data by taking σ = 1.15 gives the green curve.

Figure 4
The Δ(t,σ) similarity-measure surface for Data Set 1 as a function of the interpolation parameter t and the relative scaling of the orientation term
with σ, with the slightly concave curve at σ = 1 in the middle. The other data sets look very much like this one.
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(Set 1)

Figure 5
The Δx f (t, 1) similarity-measure surface for Data Set 1, x-angle 22◦, f-angle −22◦ , and fixed σ = 1 showing the deviation with the quaternion
varying perpendicularly around the solution q(t), starting at the identity quaternion at s = 0, as a function of the interpolation parameter t. Since
q(t) is the maximal eigenvector, all variations in q peak there. Both have distinguished central points at t ≈ 0.5.

(Set 2) (Set 3) (Set 4) (Set 5)

Figure 6
The Δx f (t, 1) similarity-measures with q(s) interpolated from the identity through the optimum for Δx f and past to the identity-mirror point, for
Data Sets 2, 3, 4, and 5, where Data Set 5 has the x-angle and the f-angle only one degree apart, as we might have for real experimental data.
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Figure 7
Here we see how close a simple slerp(t) between the extremal optimal eigenvectors qopt(t = 0, σ = 1) = qx(opt) and qopt(t = 1,σ = 1) =

qf (opt) is to the rigorous result where we optimized qopt(t,σ = 1) for all t. The differences are relative to the unit eigenvalue, and thus are
of order thousandths of a percent, decreasing significantly as the global rotations applied to the space and orientation data approach one another.
The largest deviation is for Data Set 1, which interestingly has a third minimum near the center in t; for the highly similar data in Data Set 5, the
difference shown in red had to be magnified by 100 even to show up on the graph.

The Simple Approximation. Having now observed that it is possible to construct and solve a rigorous combined
RMSD-QFA problem (with the chord-distance approximation in the angular measure), one might ask how that com-
pares to the very simplest idea one might use to interpolate between the measures: what if we take the rigorous
combined profile matrix defined by Eq. (131), compared to the slerp relating the two optimal eigenvectors of the
independent spatial and orientation frame problems, that is

q(t) = slerp(qx:opt, q f :opt, t) . (133)

Given the individual optimal eigenvectors, if we compare this simple q(t) to Eq. (131) for any t (and σ = 1), we find
that the differences are essentially negligible. In Fig 7, we plot the continuous differences of the similarity functions,
which we recall are scaled to have a maximal eigenvalue equal to unity. These scaled differences are on the order of
one thousandth of a percent or less as the global rotations applied to the spatial and rotational data become close to
one another. We conclude that, for all practical purposes, we might as well use Eq. (133) to estimate the combined
similarities.
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Appendix A

Details of the Algebraic Solutions to the Quartic Eigenvalue Problem

Given the data for the 3D or 4D test and reference structures, we can numerically solve for the maximal eigenvalue
of M3(E3) and its eigenvector in 3D, or the maximal eigenvalue of G = M4

T(E4) · M4(E4) and the left and right
eigenvectors of G in 4D. Alternatively, we can apply the numerical SVD method directly to E3 or E4 to determine the
optimal rotation matrix.

However, we can also work out the properties of the eigensystems of the various matrices that have come up in our
treatment algebraically, using classic methods (Abramowitz & Stegun, 1970) for solving quartic polynomial equations
for the eigenvalues, to provide deeper insights into the structure of the problem. We now study some features of these
results in more detail, and in particular we consider real symmetric matrices, with and without a trace, since essentially
every problem we have encountered reduces to finding the maximal eigenvalues of a matrix in that category.

The Eigenvalue Expansions. We begin by writing down the eigenvalue expansion of an arbitrary real 4D matrix M as

det[M − eI4] = 0 , (134)

where e denotes a generic eigenvalue and I4 is the 4D identity matrix. Our task is to express these eigenvalues, partic-
ularly the maximal eigenvalue, in terms of the elements of the matrix M, and also to find their eigenvectors.

By expanding Eq. (134) in powers of e, we see how the four eigenvalues e = εk=1,...,4 depend on the known
components of the matrix M and correspond to the solutions of the quartic equations that we can express in two useful
forms,

e4 + e3 p1 + e2 p2 + ep3 + p4 = 0 (135)

(e − ε1)(e − ε2)(e − ε3)(e − ε4) = 0 . (136)

Here the pk are homogeneous polynomials of order k that can be expressed alternatively employing elements of M or
elements of E for the 3D amd 4D spatial data, or with the corresponding orientation-frame data. At this point we want
to be as general as possible, and so we note the form valid for all 4 × 4 matrices M in the expansion of Eq. (134) and
Eq. (135):

p1(M) = − tr [M] (137)

p2(M) = −1
2

tr [M · M] +
1
2
(tr [M])

2 (138)

p3(M) = −1
3

tr [M · M · M] +
1
2

tr [M · M] tr [M]− 1
6
(tr [M])

3 (139)

p4(M) = −1
4

tr [M · M · M · M] +
1
3

tr [M · M · M] tr [M] +
1
8

tr ([M · M])
2 − 1

4
tr [M · M] (tr [M])

2
+

1
24

(tr [M])
4

= det [M] . (140)

Remember that for our problem, M is just a real symmetric numerical matrix, and the four expressions pk(M) are also
just a list of real numbers.

Matching the coefficients of powers of e in Eqs. (135) and (136), we can also eliminate e to express the the matrix
data expressions pk in terms of the symmetric polynomials of the eigenvalues εk as (Abramowitz & Stegun, 1970)

p1 = −ε1 − ε2 − ε3 − ε4

p2 = ε1ε2 + ε1ε3 + ε2ε3 + ε1ε4 + ε2ε4 + ε3ε4

p3 = −ε1ε2ε3 − ε1ε2ε4 − ε1ε3ε4 − ε2ε3ε4

p4 = ε1ε2ε3ε4

⎫⎪⎪⎬
⎪⎪⎭ . (141)
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Both Eq. (135) and Eq. (141) can in principle be solved directly for the eigenvalues in terms of the matrix data
using the solution of the quartic published by Cardano in 1545 and investigated further by Euler (Euler, 1733; Bell,
1733(2008); Nickalls, 2009) (see also (Abramowitz & Stegun, 1970; Weisstein, 2019; Nickalls, 1993; Wikipedia:Cardano,
2019)). Applying, e.g., the Mathematica function

Solve[myQuarticEqn[e] == 0, e, Quartics → True] (142)

to Eq. (135) immediately returns a usable algebraic formula. However, applying Solve[ ] to Eq. (141) is in fact unsuc-
cessful, although invoking Reduce[pkofepsEqns,{ε1, ε2, ε3, ε4}, Quartics → True, Cubics → True] can solve
Eq. (141) iteratively and produces the same final answer that we obtain from Eq. (135), as does using a Gröbner basis
based on Eq. (141).

In the main paper, we presented a robust algebraic solution that could be evaluated numerically for the quaternion
eigenvalues in the special case of a symmetric traceless 4× 4 profile matrix M3(E3) based on the 3D cross-covariance
matrix E3; we will complete the steps deriving that solution below. But first we will study general 4 × 4 real matrices,
and then specialize to symmetric matrices with and without a trace, as all of our cases of interest are of this type.
We note (Golub & van Loan, 1983) that any nonsingular real matrix that can be written in the form [S T · S] is itself
symmetric and has only positive real eigenvalues; in general, the symmetric matrices [S T · S] and [S · S T] share one set
of eigenvalues, but have distinct eigenvectors. Thus, even if we study only symmetric matrices, we can get significant
information about any matrix S as long as we can recast our investigation to exploit the associated symmetric matrices
[S T · S] and [S · S T].

The Basic Structure: Standard Algebraic Solutions for 4D Eigenvalues. When we solve Eq. (135) directly using the
textbook quartic solution without explicitly imposing restrictions, we find that the general structure for the eigenvalues
e = εk(p1, p2, p3, p4) takes the form

ε1(p) = − p1

4
+ F(p) + G+(p) ε2(p) = − p1

4
+ F(p)− G+(p)

ε3(p) = − p1

4
− F(p) + G−(p) ε4(p) = − p1

4
− F(p)− G−(p)

⎫⎪⎪⎬
⎪⎪⎭ . (143)

Here −p1 = (ε1 + ε2 + ε3 + ε4) is the trace, and we can see that “canonical form” for the quartic Eq. (135), with a
missing cubic term in e, results from simply changing variables from e → e + (ε1 + ε2 + ε3 + ε4)/4 to effectively add
1/4 of the trace to each eigenvalue. The other two types of terms have the following explicit expressions in terms of
the four independent coefficients pk:

F(p1, p2, p3, p4) =

√√√√ p1
2

16
− p2

6
+

1
12

(
3
√

a +
√
−b2 +

r2

3√
a +

√−b2

)

G±(p1, p2, p3, p4) =

√
3p1

2

16
− p2

2
− F2(p)± s(p)

32 F(p)

=

√√√√√√√
p1

2

8
− p2

3
− 1

12

(
3
√

a +
√
−b2 +

r2

3√
a +

√−b2

)
± s(p)

32

√√√√ p1
2

16
− p2

6
+

1
12

(
3
√

a +
√
−b2 +

r2

3√
a +

√−b2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(144)
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with

r2(p1, p2, p3, p4) = p2
2 − 3p1 p3 + 12p4 = 3√a2 + b2

a(p1, p2, p3, p4) = p2
3 + 9

2
(
3p3

2 + 3p1
2 p4 − p1 p2 p3 − 8p2 p4

)
b2(p1, p2, p3, p4) = r6(p)− a2(p)

s(p1, p2, p3, p4) = 4p1 p2 − p1
3 − 8p3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (145)

For general real matrices, which may have complex conjugate pairs of eigenvalues, the sign of r2 can play a critical
role, so giving in to the temptation to write

r2

3√
a +

√−b2
→ 3

√
a −

√
−b2

leads to anomalies; in addition, b2 can take on any value, so evaluating this algebraic expression numerically while
getting the phases of all the roots right can be problematic. So far as we can confirm, setting aside matrices with
individual peculiarities, the formula Eq. (143) yields correct complex eigenvalues for all real matrices, though the
numerical order of the eigenvalues can be irregular. When we restrict our attention to real symmetric matrices, a num-
ber of special constraints come into play that significantly improve the numerical behavior of the algebraic solutions,
as well as allowing us to simplify the algebraic expression itself. The real symmetric matrices are all that concern us
for any of the alignment problems.

Symmetric Matrices. We restrict our attention from here on to general symmetric 4 × 4 real matrices, for which the
eigenvalues must be real, and so the roots of the matrix’s quartic characteristic polynomial must be real. A critical
piece of information comes from the fact that the quartic roots are based on an underlying cube root solution (a
careful examination of how this works can be found, for example, in (Coutsias et al., 2004; Coutsias & Wester, 2019;
Nickalls, 2009)). As noted. e.g., in (Abramowitz & Stegun, 1970), the roots of this cubic are real provided that a
particular discriminant is negative. This expression takes the form

qAS
3 + rAS

2 ≤ 0 ,

where {AS} disambiguates the Abramowitz-Stegun variable names, and the relationship to our parameterization in
terms of the eigenequation coefficients pk is simply

qAS = −1
9

r2(p1, p2, p3, p4) , rAS =
1

27
a(p1, p2, p3, p4) . (146)

Thus we can see from Eq. (145) that

b2(p1, p2, p3, p4) = r6(p)− a2(p) = − 93
(
qAS

3 + rAS
2
)
, (147)

and hence for symmetric real matrices we must have b2(p) ≥ 0. Therefore for this case we can always write

(
a(p) +

√
−b(p)2

)
−→ (a + i b) , (148)
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and then we can rephrase our general solution from Eqs. (143), (144), and (145) as

F(p1, p2, p3, p4) =

√
p1

2

16
− p2

6
+

1
6

r(p) c(a, b)

G±(p1, p2, p3, p4) =

√√√√√ p1
2

8
− p2

3
− 1

6
r(p) c(a, b)± s(p)

32

√
p1

2

16
− p2

6
+

1
6

r(p) c(a, b)

=

√
3p1

2

16
− p2

2
− F2(p)± s(p)

32 F(p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (149)

where the cube root terms can now be reduced to real-valued trigonometry:

r(p) c(a, b) = r(p) cos

(
arg (a + ib)

3

)
=

1
2

(
(a + i b)1/3 + (a − i b)1/3

)
r2(p) = p2

2 − 3p1 p3 + 12p4 = 3√a2 + b2 = (a + i b)1/3(a − i b)1/3

r6(p) = a2(p) + b2(p)
s(p) = 4p1 p2 − p1

3 − 8p3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (150)

Alternative Method: The Cube Root Triples Method and Its Properties. Our first general method above corre-
sponds directly to (Abramowitz & Stegun, 1970), and consists of combinations of signs in two blocks of expressions.
The second method that we are about to explore uses sums of three expressions in all four eigenvalues, with each
term having a square root ambiguity; this is fundamentally Euler’s solution, discussed, for example, in (Coutsias
et al., 2004; Coutsias & Wester, 2019) and (Nickalls, 2009). The correspondence between this triplet and the four
expressions in Eq. (149) is delicate, but deterministic, and we will show the argument leading to the equations we
introduced in the main text.

The “Cube Root Triple” method follows from the observation that if we break up the general form of the four quartic
eigenvalues into a trace part and a sum of three identical parts whose signs are arranged to be traceless, we find an
equation that can be easily solved, and which (under some conditions that we will remove) evaluates numerically to
the same eigenvalues as Eq. (149), but can be expressed in terms of a one-line formula for the eigenvalue system. The
Ansatz that we start with is the following:

ε1
?
= − p1

4
+
√

X +
√

Y +
√

Z

ε2
?
= − p1

4
+
√

X −√
Y −√

Z

ε3
?
= − p1

4
−√

X +
√

Y −√
Z

ε4
?
= − p1

4
−√

X −√
Y +

√
Z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (151)

If we now insert our expressions for εk(p1,X ,Y, Z) from Eq. (151) into Eq. (141), we see that the pk equations are
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transformed into a quartic system of equations that can in principle be solved for the components of the eigenvalues,

p1 = p1

p2 =
3p1

2

8
− 2 (X + Y + Z)

p3 =
p1

3

16
− 8

√
X Y Z − p1(X + Y + Z)

p4 =
p1

4

256
+X2 + Y 2 + Z2− 2 (YZ + ZX + XY )− p1

√
X Y Z − p1

2

8
(X + Y + Z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (152)

While our original equation Eq. (141) does not respond to Solve[..., {ε1, ε2, ε3, ε4}, ...], and Eq. (152) with X → u2,

Y → v2, Z → w2 does not respond to Solve[..., {u, v, w}, ...], for some reason Eq. (152) with X ,Y, Z as the free

variables responds immediately to Solve[pkEqnList , {X, Y, Z}, Quartics → True ], and produces a solution for
X(p), Y (p), and Z(p) that we can manipulate into the following form,

Ff (p) =
p1

2

16
− p2

6
− 1

12

⎛
⎜⎝φ( f )

(
a(p) +

√
−b2(p)

)1/3
+

r2(p)

φ( f )
(

a(p) +
√−b2(p)

)1/3

⎞
⎟⎠ . (153)

Here Ff (p) with f = (x, y, z) represents X(p), Y (p), or Z(p) corresponding to one of the three values of the cube roots
φ( f ) of (−1) given by

φ(x) = −1 , φ(y) = 1
2

(
1 + i

√
3
)
, φ(z) = 1

2

(
1 − i

√
3
)
, (154)

and the utility functions are defined as above in Eq. (145). Once again, because we have symmetric real matrices
with real eigenvalues, we know that the discriminant condition for real solutions requires b2(p) ≥ 0, so we can again

apply Eq. (148) to transform each
(

a(p)±√−b2(p)
)

term into the form (a(p)± i b(p)). This time we get a slightly

different formula because there is a different 3√−1 phase incorporated into each of the X ,Y, Z terms, and we obtain
the following intermediate result:

Ff (p) =
p1

2

16
− p2

6
− 1

12

(
φ( f ) (a + ib)1/3

+ r2(p)
1

φ( f ) (a + ib)1/3

)

=
p1

2

16
− p2

6
− 1

6

(
φ( f )(a + ib)1/3 + φ( f ) (a − ib)1/3

)
(155)

=
p1

2

16
− p2

6
− 1

6

(
φ( f )(a + ib)1/3 + φ( f )(a + ib)1/3

)
, (156)

where φ( f ), etc., denotes the complex conjugate, and we took advantage of the relation 3√a2 + b2 = r2(p). The cube
root terms again reduce to real trigonometry, giving our final result (remember that φ(x) = −1, changing the sign)

Ff (p1, p2, p3, p4) =
p1

2

16
− p2

6
+

1
6

(
r(p) cos f (p)

)
, (157)

but now with the direct incorporation of the three phases of 3√−1 from Eq. (154) (see, e.g., (Nickalls, 1993)), we get
nothing but phase-shifted real cosines,

cosx(p)=cos

(
arg(a + ib)

3

)
, cosy(p)=cos

(
arg(a + ib)

3
− 2π

3

)
, cosz(p)=cos

(
arg(a + ib)

3
+

2π
3

)
.

(158)
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The needed subset of the utility functions now reduces to

r2(p1, p2, p3, p4) = p2
2 − 3p1 p3 + 12p4 = 3√a2 + b2 = (a + ib)1/3(a − ib)1/3

a(p1, p2, p3, p4) = p2
3 + 9

2
(
3p3

2 + 3p1
2 p4 − p1 p2 p3 − 8p2 p4

)
b2(p1, p2, p3, p4) = r6(p)− a2(p)

⎫⎪⎪⎬
⎪⎪⎭ . (159)

Repairing Anomalies in the Cube Root Triple Form. We are not quite finished, as our X ,Y, Z triplets acquire an
ambiguity due to possible alternate sign choices when we take the square roots of X ,Y, Z to construct the eigenvalues
themselves using the Ansatz of Eq. (151). As long as all the terms of one part change sign together, the tracelessness of
the X ,Y, Z segment of the eigenvalue system is maintained, so there are a number of things that could happen with the
signs without invalidating the general properties of Eq. (151). We can check that, with random symmetric matrix data,
Eq. (151) with Eq. (157) will yield the correct eigenvalues about half the time, while Eq. (143) with Eq. (149) always
works. Inspecting Eq. (149) and Eq. (157) with Eq. (158), we observe that F(p1, p2, p3, p4) =

√
Fx(p1, p2, p3, p4) =√

X ; we can also see that Eq. (149) suggests that a relation of the following form should hold,

G±(p1, p2, p3, p4) ∼
√

Y ±
√

Z ,

so we can immediately conjecture that something is going wrong with the sign choice of the root
√

Z. It turns out that
G+(p) changes its algebraic structure to essentially that of G−(p) when the numerator s(p) = (4p1 p2 − p1

3 − 8p3)
inside the square root in Eq. (149) changes sign. That tells us exactly where there is a discrepancy with the choice√

Y +
√

Z. If we define the following sign test,

σ(p1, p2, p3, p4) = sign
(
4p1 p2 − p1

3 − 8p3
)
, (160)

we discover that we can make Eq. (151) agree exactly with the robust G±(p) from Eq. (149) for all the random
symmetric numerical matrices we were able to test, provided we make the following simple change to the final form
of the X ,Y, Z formula for the eigenvalue solutions:

ε1 = − p1

4
+
√

X +
√

Y + σ(p)
√

Z

ε2 = − p1

4
+
√

X −√
Y − σ(p)

√
Z

ε3 = − p1

4
−√

X +
√

Y − σ(p)
√

Z

ε4 = − p1

4
−√

X −√
Y + σ(p)

√
Z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (161)

Algebraic Equivalence of Standard and Cube Root Triple Form. With the benefit of hindsight, we now complete
the picture by working out the algebraic properties of Eq. (143) and Eq. (144) that confirm our heuristic derivation of
Eq. (161). First, we look back at Eq. (152) and discover that, using the relations for p2 and p3, we can incorporate
X + Y + Z = 3p1

3/16 − p2/2 into p3 to get a very suggestive form for our expression s(p) from Eq. (145) in terms of
the only square-root ambiguity in our original equations that we used to solve for (X(p),Y (p), Z(p)), which is

s(p1, p2, p3, p4) = 4p1 p2 − p1
3 − 8p3 = 64

√
X(p)Y (p)Z(p) . (162)

Already we see that this is potentially nontrivial because s(p) does not have a deterministic sign, but
√

X(p)Y (p)Z(p)
will always be positive unless we have a deterministic reason to choose the negative root.
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Next, using Eq. (153), we recast Eq. (144) in a form that uses F(p) ≡ √
X(p) ≡ √

Fx(p), as well as Eq. (162), to
give

F(p1, p2, p3, p4) =
√

X(p1, p2, p3, p4)

=

√
p1

2

16
− p2

6
+

1
12

(
3
√

a −
√
−b2 +

3
√

a +
√
−b2

)

G±(p1, p2, p3, p4) =

√
3p1

2

16
− p2

2
− F2(p)± s(p)

32 F(p)

=
√

A(p1, p2, p3, p4)± B(p1, p2, p3, p4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(163)

where in fact we know a bit about how B(p) should look:

B(p) =
s(p)

32
√

X(p)
. (164)

Now we solve the equations √
A(p)± B(p) =

√
Y ± σ(p)

√
Z (165)

for A(p) and B(p), to discover

A(p) = Y (p) + σ2(p)Z(p)

= Y (p) + Z(p) (166)

B(p) = 2σ(p)
√

Y (p)Z(p) , (167)

where we note that these useful relations are nontrivial to discover directly from our original expressions for F(p) and
G±(p). Finally, using Eq. (164), we conclude that

s(p) = 64 σ(p)
√

X(p)Y (p)Z(p) , (168)

which confirms that the appearance of

σ(p) = sign(s(p)) = sign(4p1 p2 − p1
3 − 8p3) (169)

in the (X ,Y, Z) expression of Eq. (161) is rigorous and inevitable, as it can be deduced directly from its appearance in
B(p).

Alternative Reduction of the Quartic Solution. Perhaps a more explicit way to connect the (F,G±) and (X ,Y, Z)
forms, and one we might have used from the beginning with further insight, is to observe that G± is actually the square
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root of a perfect square,

G± =

√(√
Y ± σ

√
Z
)2

=
√

Y + Z ± 2σ
√

YZ

=

√
Y + Z ± 2σ

√
XYZ√

X

=

√
Y + Z ± 2σ

64
√

XYZ

64
√

X

=

√
Y + Z ± 2σ

|s(p)|
64

√
X

=

√
Y + Z ± s(p)

32
√

X(p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (170)

where we used the fact that σ(p)|s(p)| = s(p). As long as the sign with which G± enters into the solution is consistent,
the alternative overall signs of the radicals in Eq. (170) will be included correctly.

The Traceless Triple Form. The explicitly traceless X ,Y, Z triplet form that corresponds to a set of eigenvalues in
descending magnitude order that we introduced for the 3D RMSD problem in the main text is is obtained by imposing
the traceless condition, p1 = 0, obeyed by the 3D profile matrix M3(E3):

ε1 = +
√

X +
√

Y + σ(p)
√

Z
ε2 = +

√
X −√

Y − σ(p)
√

Z
ε3 = −√

X +
√

Y − σ(p)
√

Z
ε4 = −√

X −√
Y + σ(p)

√
Z

⎫⎪⎪⎬
⎪⎪⎭ . (171)

Then Eq. (152) simplifies to

p1 = 0 (172)

p2 = −2 (X + Y + Z) (173)

p3 = −8 σ(p)
√

X Y Z (174)

p4 = X2 + Y 2 + Z2 − 2 (Y Z + ZX + XY ) , (175)

and the solutions for X(p), Y (p), and Z(p) (and thus for εk(p)) reduce to:

Ff (p2, p3, p4) = +
1
6

(
r(p) cos f (p)− p2

)
, (176)

where the phased cosine terms retain their form

cosx(p)=cos

(
arg (a + ib)

3

)
, cosy(p)=cos

(
arg (a + ib)

3
− 2π

3

)
, cosz(p)=cos

(
arg (a + ib)

3
+

2π
3

)
.

(177)
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Here Ff (p) with f = (x, y, z) as always represents X(p), Y (p), or Z(p) and the utility functions simplify to

σ(p3) = sign(−p3)

r2(p2, p3, p4) = p2
2 + 12p4 = 3

√
a2 + b2 = (a + ib)1/3(a − ib)1/3

a(p2, p3, p4) = p2
3 + 9

2
(
3p3

2 − 8p2 p4
)

b2(p2, p3, p4) = r6(p)− a2(p)

=
27
4

(
16p4 p2

4 − 4p3
2 p2

3 − 128p4
2 p2

2 + 144p3
2 p4 p2 − 27p3

4 + 256p4
3
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (178)

Summary: We therefore have two alternate robust expressions, Eq. (143) with Eq. (149) and
Eq. (161) with Eq. (157), for the entire eigenvalue spectrum of any real, symmetric 4 × 4 matrix M
characterized by its four intrinsic eigenequation coefficients (p1, p2, p3, p4). For the simpler trace-
less case, we can take advantage of Eq. (171) with Eq. (176).
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