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Appendix B

A Seven-Space Representation of Lattices Based on Sorted Delone

Reduction – Supplementary Material

For notation and background, see the main paper sections A.1 and 1.

We review the relationship between Niggli reduction and Delone reduction and

present a representation of Delone-reduced cells in a seven-dimensional space of squared

lengths, D7, as an alternative to the six-dimensional S6 space Selling inner products,

within which the fundamental unit including sorting is convex and equivalent to the

conventional representations.

See A.2 for Delone (Delaunay) reduction. Compare this to the more complex Niggli

conditions B.1. Next we turn to the structure of D7.

B.1. The Niggli Conditions

The Niggli-reduced cell of a lattice is a unique choice from among the infinite number

of alternate cells that generate the same lattice (Niggli, 1928). A Buerger-reduced cell,

which is equivalent to a Minkowski-reduced cell (Minkowski, 1905) for a given lattice

is any cell that generates that lattice, chosen such that no other cell has shorter cell

edges (Buerger, 1960). Even after allowing for the equivalence of cells in which the

directions of axes are reversed or axes of the same length are exchanged, there can

be up to five alternate Buerger-reduced cells for the same lattice (Gruber, 1973). The

Niggli conditions allow the selection of a unique reduced cell for a given lattice from

among the alternate Buerger-reduced cells for that lattice.

Niggli reduction consists of converting the original cell to a primitive one and then

alternately applying two operations: conversion to standard presentation and reduc-
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tion (Andrews & Bernstein, 1988). The convention for meeting the combined Buerger

and Niggli conditions is based on increasingly restrictive layers of constraints:

If g1 < g2 < g3, |g4| < g2, |g5| < g1, |g6| < g1 and either g{4,5,6} > 0 or g{4,5,6} ≤ 0

then we have a Niggli-reduced cell, and we are done.

The remaining conditions are imposed when any of the above inequalities becomes

an equality or the elements of g{4,5,6} are not consistently all strictly positive or are

not consistently all less than or equal to zero.

The full set of combined Niggli conditions, in addition to those for the cell edge

lengths being minimal, is:

require 0 ≤ g1 ≤ g2 ≤ g3

if g1 = g2, then require |g4| ≤ |g5|

if g2 = g3, then require |g5| ≤ |g6|

require {g4 > 0 and g5 > 0 and g6 > 0}

or require {g4 ≤ 0 and g5 ≤ 0 and g6 ≤ 0}

require |g4| ≤ g2

require |g5| ≤ g1

require |g6| ≤ g1

require g3 ≤ g1 + g2 + g3 + g4 + g5 + g6

if g4 = g2, then require g6 ≤ 2g5

if g5 = g1, then require g6 ≤ 2g4

if g6 = g1, then require g5 ≤ 2g4

if g4 = −g2, then require g6 = 0

if g5 = −g1, then require g6 = 0
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if g6 = −g1, then require g5 = 0

if g3 = g1 + g2 + g3 + g4 + g5 + g6, then require 2g1 + 2g5 + g6 ≤ 0

TheG6 transformations associated with each of these steps are enumerated in (Andrews

& Bernstein, 1988). Application of these transformations must be repeated until all

conditions are satisfied.

B.2. The 7-Dimensional Delone Space D7

Consider the Bravais tetrahedron a, b, c, d = −a− b− c

If we consider only lengths, then the total ensemble of seven unique lengths resulting

from the Bravais tetrahedron and the additive face and body diagonals is

{||a ||, ||b ||, || c ||, ||d ||, ||b+ c ||, ||a+ c ||, ||a+ b || }

Taking squares of these lengths gives a seven-vector defined by (Delone et al., 1975)

in a space we call D7 for Delone 7-space:

[d1 = ||a ||2, d2 = ||b ||2, d3 = || c ||2, d4 = ||d ||2,

d5 = ||b+ c ||2, d6 = ||a+ c ||2, d7 = ||a+ b ||2]

= [d1 = ||a ||2, d2 = ||b ||2, d3 = || c ||2, d4 = ||d ||2,

d5 = ||a+ d ||2, d6 = ||b+ d ||2, d7 = || c+ d ||2]

= [g1, g2, g3, g1 + g2 + g3 + g4 + g5 + g6,

g2 + g3 + g4, g1 + g3 + g5, g1 + g2 + g6]

= [−Q−R− S, −P −R− T, −P −Q− U, −S − T − U,−Q−R− T − U,

−P −R− S − U, −P −Q− S − T ]

and

P = −d2/2− d3/2 + d5/2
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Q = d2/2 + d4/2− d5/2− d7/2

R = −d1/2− d2/2 + d7/2

S = −d1/2− d4/2 + d5/2

T = d1/2 + d3/2− d5/2− d7/2

U = −d3/2− d4/2 + d7/2

In D7 the Delone reduced cells are defined by:

d1, d2, d3, d4, d5, d6, d7 > 0 (B.1)

d1 + d2 + d3 + d4 − d5 − d6 − d7 = 0 (B.2)

d1 ≤ d2 ≤ d3 ≤ d4 (B.3)

d5 ≤ d2 + d3 (B.4)

d5 ≤ d1 + d4 (B.5)

d6 ≤ d1 + d3 (B.6)

d6 ≤ d2 + d4 (B.7)

d7 ≤ d1 + d2 (B.8)

d7 ≤ d3 + d4 (B.9)

d5 ≥ d2 − d3 (B.10)

d5 ≥ d1 − d4 (B.11)

d6 ≥ d1 − d3 (B.12)
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d6 ≥ d2 − d4 (B.13)

d7 ≥ d1 − d2 (B.14)

d7 ≥ d3 − d4 (B.15)

Boundaries may be defined by equalities in the above relationships.

As we will show, the conditions B.1 through B.15 are necessary and sufficient for

a well-defined cell to be Delone reduced, and for the fundamental region of points in

seven-space satisfying those conditions to be convex, with seven 5-dimensional bound-

aries.

B.3. Comments on projectors and boundaries

All the currently accepted reduction processes depend on obeying constraining lin-

ear inequalities. Such inequalities determine boundaries of the space of reduced cells.

Because they are linear, the results are linear polytopes defining boundaries of the

fundamental region of reduced cells. The highest dimension polytopes completely

determine the shape of the fundamental region. For example. the highest order bound-

aries in G6 (which is a 6-dimensional space) are 5-dimensional polytopes. The lower

dimensional boundary polytopes are all the result of the intersections of the higher

dimensional polytopes.

Given a unit cell, the distance from that cell to another cell depends on whether

we draw a line directly between the two cells or look at lines that are interrupted

by boundaries. Metrics in spaces of reduced cells depend on an understanding of

where each cell stands in relation to each boundary. For that we need projection

matrices that project from a cell to the nearest cell in a boundary. The boundaries

can be determined entirely algebraically; however it is more efficient to start with

computational experiments that probe all boundaries and reveal which ones are more
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populated and likely to be higher dimensional and therefore more fundamental to this

necessary understanding.

The boundaries presented here were discovered first by Monte Carlo experiments

and then by confirming algebraic analysis using the reduction inequalities that funda-

mentally determine the boundaries.

The process of finding projectors began by randomly generating a large number

of vectors satisfying the boundary conditions. For one of the boundaries, a group of

vectors that is sufficient to span the boundary polytope is generated. Treating the

vectors as an m by n matrix (n vectors of m dimension), singular value decomposition

gives one the eigenvectors that span the boundary polytope and those eigenvectors

serve as the projector. A simpler confirming method is to take powers of the product

of the m by n matrix and its transpose.

For distance calculations, the “perp”, the unit matrix minus the projector, is also

needed. This is represented in the equations by the ⊥ symbol.

B.4. Necessity of conditions B.1 through B.15

The necessity of B.1 follows from the definition of each of d1 through d7 as a length,

which, as norms, must be non-negative. The zero cases can only arise from a tetrahe-

dron with a zero edge in the first four cases, or a 180 degree angle in the last three

cases.

We show the necessity of B.2 from the representations in terms of G6 components.

d1 + d2 + d3 + d4 − d5 − d6 − d7

= g1 + g2 + g3 + g1 + g2 + g3 + g4 + g5 + g6

−g2 − g3 − g4 − g1 − g3 − g5 − g1 − g2 − g6

= (1 + 1− 1− 1) ∗ g1 + (1 + 1− 1− 1) ∗ g2 + (1 + 1− 1− 1) ∗ g3
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+(1− 1) ∗ g4 + (1 − 1) ∗ g5 + (1− 1) ∗ g6 = 0

Conditions B.4 through B.9 are just a restatement of the Delone reduction condition

of obtuse or right angles among the four cell edges, and thus are necessary.

Finally, the remaining conditions follow from the Cauchy-Schwarz inequality and

from the tetrahedron cell edge length ordering we have chosen. For example

|b · c| ≤ ||b||||c|| ≤ ||c||2

=⇒ −g4 ≤ 2g3 =⇒ −g3 ≤ g3 + g4 =⇒ g2 − g3 ≤ g2 + g3 + g4

which is equivalent to B.10

The necessity of all B.10 through B.15 follows similarly.

B.5. Sufficiency of conditions B.1 through B.15

In order to show that conditions B.1 through B.15 are sufficient to define Delone

reduction, we need to map from D7 to G6 and verify that the left-hand sides in A.1

through A.6 are all less than or equal to zero when B.1 through B.15 are satisfied.

Given a cell d = (d1, d2, d3, d4, d5, d6, d7) ∈ D7, we define the mapping from D7 to

G6 by:

D7to G6(d1, d2, d3, d4, d5, d6, d7)

= (d1, d2, d3, d5 − d2 − d3, d6 − d1 − d3, d7 − d1 − d2)

The requirement that A.1 through A.3 be less than or equal to zero is satisfied

by applying B.4, B.6, and B.8. The requirement that A.4 through A.6 be less than

or equal to zero can be seen to be satisfied by combining condition B.2 with one of

conditions B.5, B.7 or B.9. For example, A.4 is equivalent to

0 ≥ −2d1 − (d7 − d1 − d2)− (d6 − d1 − d3)

= −d7 + d2 − d6 + d3
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applying B.2 by subtracting it

= −d7 + d2 − d6 + d3 − (d1 + d2 + d3 + d4 − d5 − d6 − d7)

= −d1 − d4 + d5

which is equivalent to condition B.5. The other conditions are similarly satisfied. Note

that we have not used all of B.1 through B.15 The system has strong redundancies.

This is inherent because we are using a seven-dimensional representation of a six-

dimensional space. We do this because it changes complex mappings involving the

body diagonals into simple permutations.

B.6. The Seven 5-D Boundaries Polytopes of D7

The full 7-dimensional space is projected to a 6-dimensional space by the linear

constraint B.2. We start the exploration of this space by identifying the 5-dimensional

boundary polytopes that result from considering one equality in the above relation-

ships at a time.

B.7. Cases 1, 2 and 3: Equal Bravais tetrahedron Edge Lengths

These cases arise when two Bravais tetrahedron edges have equal lengths, the equal-

ity cases in expression B.3. Consider for example d1 = d2. The boundary transforma-

tion would be based on exchanging a and b, but that simple exchange would reverse

the handedness of the cell, so we also negate all resulting edges to restore the hand-

edness.

B.7.1. Case 1 d1 = d2, Q + S = P + T , ||a ||2 = ||b ||2, a → −b, b → −a, c → −c,

d → a+ b+ b = −d

MD1 =
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D7 subspace: (r, r, s, t, u, v, 2r + s+ t− u− v)

B.7.2. Case 2 d2 = d3, R + T = Q+ U , ||b ||2 = || c ||2, a → −a, b → −c, c → −b,

d → a+ b+ b = −d

MD2 = (1000000/0010000/0100000/0001000/0000100/0000001/0000010)
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D7 subspace: (r, s, s, t, u, v, r + 2s+ t− u− v)

B.7.3. Case 3 d3 = d4, P +Q = S+T , || c ||2 = ||d ||2 = ||a+b+c ||2, a → −a, b →

−b, c → a+ b+ c, d → −c

MD3 = (1000000/0100000/0001000/0010000/0000010/0000100/0000001)
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D7 subspace: (r, s, t, t, u, v, r + s+ 2t− u− v)

B.7.4. Other equality cases Consider the other possible edge length equality cases.

The other potential boundary polytopes to consider are:

d1 = d3 (B.16)

d1 = d4 (B.17)

d1 = d5 (B.18)

d1 = d6 (B.19)

d1 = d7 (B.20)

d2 = d4 (B.21)

d2 = d5 (B.22)

d2 = d6 (B.23)

d2 = d7 (B.24)

d3 = d5 (B.25)

d3 = d6 (B.26)

d3 = d7 (B.27)
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d4 = d5 (B.28)

d4 = d6 (B.29)

d4 = d7 (B.30)

d5 = d6 (B.31)

d5 = d7 (B.32)

d6 = d7 (B.33)

The boundary polytopes B.16, B.17, and B.21 are of dimensions 4, 3 and 4, respec-

tively, because they imply additional equalities from the ordering in B.3. Many of the

others arise in mapping Niggli characters into Delone conditions.

B.8. Cases 4, 5, 6, 7, 8, 9: Right angle cases

There are six cases, cases 4, 5, 6, 7, 8, 9 given by expressions B.4 through B.9 with

inequality replaced by equality, in which edges of the Bravais tetrahedron meet at

right angles. Cases 4, 5, 6, and 8 are 5-dimensional and cases 7 and 9 are of lower

dimension. Consider for example

d5 = d2 + d3

g2 + g3 + g4 = g2 + g3

g4 = 2b · c = 0

The full set of resulting equations in the same ordering as expressions B.4 through

B.9 are

2b · c = g4 = 0;P = 0 (B.34)
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2a · d = 2a · (−a− b− c) = −2g1 − g6 − g5 = 0;S = 0 (B.35)

2a · c = g5 = 0;Q = 0 (B.36)

2b · d = 2b · (−a− b− c) = −g6 − 2g2 − g4 = 0;T = 0; (B.37)

2a · b = g6 = 0;R = 0 (B.38)

2c · d = 2c · (−a− b− c) = −g5 − g4 − 2g3 = 0;U = 0; (B.39)

The right angle cases are Delone reduced. However a slight perturbation will introduce

an acute angle, necessitating a transformation to return to D7. In order to understand

the necessary transformation, consider a Delone-reduced cell with tetrahedron

aorig,borig, corig,−aorig − borig − corig

for which 2borig · corig = 0. Impose a slight perturbation on borig to form bptrb such

that bptrb · corig = ǫ > 0, and such that all other inner products remain non-positive.

We convert from the +−− presentation to + + + by changing +the sign of a. If we

define aptrb = −aorig with a small additional perturbation to guarantee that

2aptrb · corig > 0

2aptrb · bptrb > 0

then we are starting from a +++ case with a small g4 and can apply the transformation

in expression A.9 to return to the −−− case using the tetrahedron

bptrb − aptrb,−bptrb, corig,aptrb − corig

which says, up to reordering, if the + + + case we generated is Niggli-reduced, the

boundary transform takes the tetrahedron to

b+ a,−b, c,−a− c
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There is only one mapping back into D7 for each right angle case, but in each of

these cases several permuted versions of the boundary transform may be needed to

ensure that the results are ordered d1 ≤ d2 ≤ d3 ≤ d4. While there are, in general, 24

permutations of 4 objects, the ordering constraint reduces the number of acceptable

permutations to eight, six, or zero cases that represent 5-dimensional boundaries. The

remaining permutations imply additional constraints that lower the dimensionality of

the resulting boundary polytope.

The general pattern is that the new Bravais tetrahedron resulting from a right-angle

boundary mapping will change the sign of one of the two edges involved in the right

angle and leave the other edge that is involved unchanged.

B.8.1. Case 4: d5 = d2 + d3 (see equation B.4). This is equivalent to g4 = 0. The

Bravais tetrahedron edges to be ordered are

a+ b,−b, c,−a− c

In this case, the only acceptable permutations are ones that preserve the relative

ordering of ||a ||2 ≤ ||b ||2 ≤ || c ||2 ≤ ||d ||2 with obtuse angles. If ||b ||2 is presented

first, all six permutations of the remaining three edges are feasible. It is not possible

to present || c ||2 first, because that would leave no room to present ||b ||2, except in

the lower-dimensional polytope resulting from the intersection of Case 4 with Case 2.

If ||a + b ||2 is presented first, then we must have ||a + b ||2 ≤ || − b ||2 which is

equivalent to

||a ||2 + 2a · b ≤ 0 (B.40)

From the ordering constraint || c ||2 ≤ ||d ||2 and equation B.40 it follows that

0 ≤ ||a ||2+||b ||2+2b·c+2a·c+2a·b ≤ ||b ||2+2b·c+2a·c = ||−a−c||−|| c ||2+2b·c
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but from the obtuseness of the angles in a Bravais tetrahedron, we have

|| − a− c|| − || c ||2 ≥ 0

i.e.

|| − a− c|| ≥ || c ||2

which allows only one ordering in this case. Similarly there is only one ordering when

||a+ c ||2 is presented first. Thus there is a total of eight 5-dimensional cases:

MD4.1 =
(

0100000/0010000/0000010/0000001/1000000/0001000/0220100
)

MD4.2 =
(

0100000/0010000/0000001/0000010/0001000/1000000/0220100
)

MD4.3 =
(

0100000/0000010/0010000/0000001/1000000/0220100/0001000
)

MD4.4 =
(

0100000/0000010/0000001/0010000/0220100/1000000/0001000
)

MD4.5 =
(

0100000/0000001/0010000/0000010/0001000/0220100/1000000
)

MD4.6 =
(

0100000/0000001/0000010/0010000/0220100/0001000/1000000
)

MD4.7 =
(

0000010/0100000/0010000/0000001/0220100/1000000/0001000
)

MD4.8 =
(

0000001/0100000/0010000/0000010/0220100/0001000/1000000
)
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This implies D7 cells of the form [r, s, t, u, s+t, v, r+u−v], 0 ≤ r ≤ s ≤ t ≤ u ≤ r+v

v ≤ s+ u. As G6 cells, these cells are of the form [r, s, t, 0, v − t− r, u− v − s].

B.8.2. Case 4 Internal Boundaries The eight permutations that constitute the case 4

five-dimensional case in terms of D7 components are

d2, d3, d6, d7

d2, d3, d7, d6

d2, d6, d3, d7

d2, d6, d7, d3

d2, d7, d3, d6

d2, d7, d6, d3

d6, d2, d3, d7

d7, d2, d3, d6

so the internal boundaries are:

{4.1, 4.2} : d6 = d7

{4.1, 4.3} : d3 = d6
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{4.3, 4.4} : d3 = d7

{4.2, 4.5} : d3 = d7

{4.4, 4.6} : d6 = d7

{4.3, 4.7} : d2 = d6

{4.5, 4.8} : d2 = d7

leaving the conditions d6 = d7, d3 = d6, d3 = d7, d2 = d6, and d2 = d7, all subject

to the case 4 conditions d5 = d2 + d3, g4 = 0 and the general Bravais tetrahedron

condition d1 + d2 + d3 + d4 − d5 − d6 − d7 to analyze.

The projectors onto the 4-dimensional internal boundaries are:

PD4 67 =
(

3

4
00

1

4
0
1

4

1

4
/0

2

3

1

3
0
1

3
00/0

1

3

2

3
0
1

3
00/

1

4
00

3

4
0
1

4

1

4
/0

1

3

1

3
0
2

3
00/

1

4
00

1

4
0
1

4

1

4
/
1

4
00

1

4
0
1

4

1

4

)

PD4 36 =

(
12

17

1

17

2

17

5

17

1

17

2

17

5

17
/
1

17

10

17

3

17

1

17

7

17

3

17

1

17
/
2

17

3

17

6

17

2

17

3

17

6

17

2

17
/
5

17

1

17

2

17

12

17

1

17

2

17

5

17
1

17

7

17

3

17

1

17

10

17

3

17

1

17
/
2

17

3

17

6

17

2

17
,
3

17

6

17

2

17
/
5

17

1

17

2

17

5

17

1

17

2

17

12

17
)

PD4 37 =

(
12

17

1

17

2

17

5

17

1

17

5

17

2

17
/
1

17

10

17

3

17

1

17

7

17

1

17

3

17
/
2

17

3

17

6

17

2

17

3

17

2

17

6

17
/
5

17

1

17

2

17

12

17

1

17

5

17

2

17
1

17

7

17

3

17

1

17

10

17

1

17

3

17
/
5

17

1

17

2

17

5

17

1

17

12

17

2

17
/
2

17

3

17

6

17

2

17

3

17

2

17

6

17
)

PD4 26 =

(
12

17

2

17

1

17

5

17

1

17

2

17

5

17
/
2

17

6

17

3

17

2

17

3

17

6

17

2

17
/
1

17

3

17

10

17

1

17

7

17

3

17

1

17
/
5

17

2

17

1

17

12

17

1

17

2

17

5

17
1

17

3

17

7

17

1

17

10

17

3

17

1

17
/
2

17

6

17

3

17

2

17

3

17

6

17

2

17
/
5

17

2

17

1

17

5

17

1

17

2

17

12

17
)

PD4 27 =

(
12

17

2

17

1

17

5

17

1

17

5

17

2

17
/
2

17

6

17

3

17

2

17

3

17

2

17

6

17
/
1

17

3

17

10

17

1

17

7

17

1

17

3

17
/
5

17

2

17

1

17

12

17

1

17

5

17

2

17
1

17

3

17

7

17

1

17

10

17

1

17

3

17
/
5

17

2

17

1

17

5

17

1

17

12

17

2

17
/
2

17

6

17

3

17

2

17

3

17

2

17

6

17
)
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B.8.3. Case 5: d5 = d1 + d4 (see equation B.5). The Bravais tetrahedron edges to be

ordered are

−a,a+ b,a+ c,d = −a− b− c

As in case 4, above, the original Bravais tetrahedron edge ordering must be respected

in selecting permutations, which limits us to permutations that begin with || − a ||2,

||a + b ||2 or ||a + c ||2. If we were to begin with ||d ||2 there would be no room for

|| − a ||2 except in the lower-dimensional case of the intersection of case 5 with cases

1, 2 and 3.

Consider the permutations that begin with || − a ||2. There are six possible permta-

tions of ||d ||2, ||a+ b ||2, and ||a+ c ||2 to consider. If || − a ||2 does not come first,

then it must come second and only either ||a+ b ||2 or ||a+ c ||2 may come before it

or we are forced into lower-dimensional cases.

MD5.1 =
(

1000000/0001000/0000010/0000001/0100000/0010000/2002100
)

MD5.2 =
(

1000000/0001000/0000001/0000010/0010000/0100000/2002100
)

MD5.3 =
(

1000000/0000010/0001000/0000001/0100000/2002100/0010000
)

MD5.4 =
(

1000000/0000010/0000001/0001000/2002100/0100000/0010000
)

MD5.5 =
(

1000000/0000001/0001000/0000010/0010000/2002100/0100000
)

MD5.6 =
(

1000000/0000001/0000010/0001000/2002100/0010000/0100000
)

MD5.7 =
(

0000010/1000000/0001000/0000001/2002100/0100000/0010000
)

MD5.8 =
(

0000001/1000000/0001000/0000010/2002100/0010000/0100000
)

PD5 =
(

2

3
00

1

3

1

3
00/0

3

4

1

4
00

1

4

1

4
/0

1

4

3

4
00

1

4

1

4
/
1

3
00

2

3

1

3
00/

1

3
00

1

3

2

3
00/0

1

4

1

4
00

3

4

1

4
/0

1

4

1

4
00

1

4

3

4

)

PD⊥
5 =
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(

1

3
00

1

3

1

3
00/0

1

4

1

4
00

1

4

1

4
/0

1

4

1

4
00

1

4

1

4
/
1

3
00

1

3

1

3
00/

1

3
00

1

3

1

3
00/0

1

4

1

4
00

1

4

1

4
/0

1

4

1

4
00

1

4

1

4

)

This implies D7 cells of the form [r, s, t, u, r + u, v, s + t − v], 0 ≤ r ≤ s ≤ t ≤ u,

u+ r ≤ t+ s, t ≤ r + v, v ≤ r + t, which are G6 cells of the form [r, s, t, u − t− s +

r, v − t− r, t− r − v].

B.8.4. Case 6: d6 = d1 + d3, (see equation B.6). The Bravais tetrahedron edges to be

ordered are

a,−a− b,−c,b+ c

As with case 4, there are 8 permutations that result in 5-dimensional boundary poly-

topes.

MD6.1 =
(

1000000/0010000/0000100/0000001/0100000/0001000/2020010
)

MD6.2 =
(

1000000/0010000/0000001/0000100/0001000/0100000/2020010
)

MD6.3 =
(

1000000/0000100/0010000/0000001/0100000/2020010/0001000
)

MD6.4 =
(

1000000/0000100/0000001/0010000/2020010/0100000/0001000
)

MD6.5 =
(

1000000/0000001/0010000/0000100/0001000/2020010/0100000
)

MD6.6 =
(

1000000/0000001/0000100/0010000/2020010/0001000/0100000
)

MD6.7 =
(

0000100/1000000/0010000/0000001/2020010/0100000/0001000
)

MD6.8 =
(

0000001/1000000/0010000/0000100/2020010/0001000/0100000
)

PD6 =
(

2

3
0
1

3
00

1

3
0/0

3

4
0
1

4

1

4
0
1

4
/
1

3
0
2

3
00

1

3
0/0

1

4
0
3

4

1

4
0
1

4
/0

1

4
0
1

4

3

4
0
1

4
/
1

3
0
1

3
00

2

3
0/0

1

4
0
1

4

1

4
0
3

4

)

PD⊥
6 =

(

1

3
0
1

3
00

1

3
0/0

1

4
0
1

4

1

4
0
1

4
/
1

3
0
1

3
00

1

3
0/0

1

4
0
1

4

1

4
0
1

4
/0

1

4
0
1

4

1

4
0
1

4
/
1

3
0
1

3
00

1

3
0/0

1

4
0
1

4

1

4
0
1

4

)
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This implies D7 cells of the form [r, s, t, u, v, r+t, s+u−v], 0 ≤ r ≤ s ≤ t ≤ u ≤ r+v,

v ≤ s+ u, which are G6 cells of the form [r, s, t, v − t− s, 0, u− v − r].

B.8.5. Case 7, a subboundary of Case 6: d6 = d2+d4 (see equation B.7). The Bravais

tetrahedron edges to be ordered are

a+ b,−b,b+ c,d = −a− b− c

This is not a 5-dimensional boundary. If we call the original case 7 boundary Bravais

tetrahedron

a7,b7, c7,d7 = −a7 − b7 − c7

with the ordering

||a7 ||
2 ≤ ||b7 ||

2 ≤ || c7 ||
2 ≤ ||d7 ||

2

which, by subtracting || c7 ||
2 from the third and fourth terms implies

0 ≤ ||a7 ||
2 + ||b7 ||

2 + 2b7 · c7 + 2a7 · c7 + 2a7 · b7

= (||a7 ||
2−||b7 ||

2)+(||b7 ||
2−||b7 ||

2)+(2a7 ·c7)+(2||b7 ||
2+2a7 ·b7+2b7 ·c7)

in which each of the parenthesized terms is less than or equal to zero, which means

each of them is, indeed, equal to zero, so that

||a7 ||
2 = ||b7 ||

2

and

2a7 · c7 = 0

then this all, combined with d6 = d1 + d3, gives three constraints, thereby lowering

the dimension of this boundary to three.
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The three-dimensional projector, with “C” in place of “12” and “D” in place of

“13” is:

PD7 =
(7733242/7733242/3377242/3377242/2222C48/4444484/222284C)

20

PD⊥
7 =

(D733242/7D33242/33D7242/33D7242/2222848/44444C4/2222848)

20

This implies D7 cells of the form [r, r, s, s, t, r+ s, r+ s− t], 0 ≤ r ≤ s 0 ≤ t ≤ r+ s,

s ≤ r + t, which are G6 cells of the form [r, r, s, t− s− r, 0,−t+ s− r]. Thus all case

7 cells are also case 6 cells.

B.8.6. Case 8: d7 = d1 + d2 (see equation B.8). This is equivalent to g6 = 0. The

Bravais tetrahedron edges to be ordered are

a,−b,b+ c,−a− c

As in case 4, above, the original Bravais tetrahedron edge ordering must be respected

in selecting permutations, which requires that ||a||2 ≤ ||b||2. In addition, neither ||a ||2

nor ||b ||2 can be larger than both ||b + c ||2 and || − a− c ||2 or we will force ||d ||2

to be equal to ||a ||2 or ||b ||2, respectively, thereby lowering the dimension of the

boundary. This leaves the following six feasible 5-dimensional polytopes.

MD8.1 =
(

1000000/0100000/0000100/0000010/0010000/0001000/2200001
)

MD8.2 =
(

1000000/0100000/0000010/0000100/0001000/0010000/2200001
)

MD8.3 =
(

1000000/0000100/0100000/0000010/0010000/2200001/0001000
)

MD8.4 =
(

1000000/0000010/0100000/0000100/0001000/2200001/0010000
)

MD8.5 =
(

0000010/1000000/0100000/0000100/2200001/0001000/0010000
)

MD8.6 =
(

0000100/1000000/0100000/0000010/2200001/0010000/0001000
)

PD8 =
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(

2

3

1

3
0000

1

3
/
1

3

2

3
0000

1

3
/00

3

4

1

4

1

4

1

4
0/00

1

4

3

4

1

4

1

4
0/00

1

4

1

4

3

4

1

4
0/00

1

4

1

4

1

4

3

4
0/

1

3

1

3
0000

2

3

)

PD⊥
8 =

(

1

3

1

3
0000

1

3
/
1

3

1

3
0000

1

3
/00

1

4

1

4

1

4

1

4
0/00

1

4

1

4

1

4

1

4
0/00

1

4

1

4

1

4

1

4
0/00

1

4

1

4

1

4

1

4
0/

1

3

1

3
0000

1

3

)

This implies D7 cells of the form [r, s, t, u, v, t + u − v, r + s], 0 ≤ r ≤ s ≤ t ≤ u,

t ≤ u− v, v ≤ s+ u, which are G6 cells of the form [r, s, t, v − t− s, u− v − r, 0].

B.8.7. Case 9, as subboundary of Case 8: d7 = d3+d4 (see equation B.9). The Bravais

tetrahedron edges to be ordered are

−c,a+ c,b+ c,d = −a− b− c

This is not a 5-dimensional boundary. If we call case 9 boundary Bravais tetrahedron

a9,b9, c9,d9 = −a9 − b9 − c9

with the ordering

||a9 ||
2 ≤ ||b9 ||

2 ≤ || c9 ||
2 ≤ ||d9 ||

2

which, by subtracting || c9 ||
2 from the third and fourth terms implies

0 ≤ ||a9 ||
2 + ||b9 ||

2 + 2b9 · c9 + 2a9 · c9 + 2a9 · b9

= (||a9 ||
2−|| c9 ||

2)+(||b9 ||
2−|| c9 ||

2)+(2a9 ·b9)+(2|| c9 ||
2+2a9 ·c9+2b9 ·c9) ≤ 0

in which each of the parenthesized terms in less than or equal to zero, which means

each of them is, indeed, equal to zero, so that

||a9 ||
2 = ||b9 ||

2 = || c9 ||
2

and

2a9 · b9 = 0
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then this all, combined with d7 = d3 + d4, gives four constraints, thereby lowering the

dimension of this boundary to two.

Monte Carlo experiments have not produced any examples of this boundary thus

far. If these cases do exist, they should be permutations of

MD9.1 =
(

0010000/0000010/0000100/0001000/2200221/0100000/1000000
)

The 2-dimensional projector for case 9 is

PD9 =
(1111112/1111112/1111112/1111112/1111642/1111462/2222224)

10

PD⊥
9 =

(9111112/1911112/1191112/1119112/1111442/1111442/2222226)

10

This implies D7 cells of the form [r, r, r, r, s, 2r − s, 2r], 0 ≤ r, 0 ≤ s ≤ 2r, which are

G6 cells of the form [r, r, r, s − 2r,−s, 0]. Thus all case 9 cells are also case 8 cells.


