
Supplementary Materials

Fournier Bertrand, Jesse Sokolow, Philip Coppens

1 Extra constraint for the weighted least-squares

(WLS) scaling method

In the WLS method described in the section 4.2 of the article, the scaling of
different ratio data sets is performed by minimizing the error function ǫRmin.
This function depends on the variable vector x consisting of the different Ratio
model variables,
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[

∑

j∈{Robs}
i
H

w
(i,j)
obs (H)

(

R
(i,j)
obs (H)−Ri

model(H)
)2

]]

(1)

where {H}iunique is the set of unique reflections of data set i, {Robs}
i

H
is the

set of observed ratios of the unique reflection H in the data set i, R
(i,j)
obs (H) the

jth observed ratio in the set {Robs}
i

H
, and w

(i,j)
obs (H) the corresponding weight

(by default w
(i,j)
obs (H) = 1/s2

R
(i,j)
obs (H)

with s2
R

(i,j)
obs (H)

the estimated variance of

R
(i,j)
obs (H)).
The ratio model of the unique reflection H in data set i is defined as

Ri
model(H) ≃ Ki

ratio

[

1 +Qiηmodel(H)
]

(2)

in which ηmodel(H) is the calculated average η for the reflection H, Qi the
relative population and Ki

ratio the global ratio scaling factor of set i.
The minimization of ǫRmin is done under the constraintm1 = 0 defined in the

section 4.2.2.
When the laser-ON and laser-OFF intensities are collected on the same sam-

ple with the same X-ray beam setting, all factors Kratio equal 1.0. If they are
not, after appropriate corrections done the sets of intensities with and without
laser-exposure do not share the same global scale. Thus, for each ratio data set
i, a global ratio scaling factor Ki

ratio must be refined and an extra constraint
m2 = 0 is necessary to properly scale the observations. This constraint con-
sists in setting to 1.0 the intercept of the linear regression on the calculated
average η variables ηmodel as function of the squared reciprocal space resolution
ω2 = sin2θ/λ2. The application of this constraint helps to decorrelate the fac-
tors Kratio and the relative populations Q. The expression of a linear regression
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intercept is well known which leads to the following expression for the constrain
m2 = 0 with

m2(x) =

∑

X2

∑

Y −
∑

X

∑

XY

NH

∑

X2 − (
∑

X)
2 (3)

with
∑

XY ,
∑

Y ,
∑

X and
∑

X2 defined as

∑

XY

=
∑

H∈{H}all
unique

ηmodel(H)ω2(H) (4a)

∑

Y

=
∑

H∈{H}all
unique

ηmodel(H) (4b)

∑

X

=
∑

H∈{H}all
unique

ω2(H) (4c)

∑

X2

=
∑

H∈{H}all
unique

ω4(H) (4d)

2 Estimation of standard deviations

The minimization of the error function ΦR
min under a set of linear constraints

{mi} can be treated using the Lagrangian method as the optimization of the
following function ψR

min

ψR
min(x,Λ) = ΦR

min(x) +
∑

i∈{constraints}

λimi(x) (5)

in which x is the vector of the refined ratio model variables and Λ the vector
of the lagrangian multipiers λi.

At the convergence of the ψR
min optimization at

(

x̃; Λ̃
)

, the following rela-

tions are satisfied,

∂ψR
min

∂x
(x,Λ) =

∂ΦR
min

∂x
(x) +

∑

i∈{constraints}

λi
∂mi

∂x
(x) = 0 (6a)

For each constraint i, mi(x) = 0 (6b)

In the vicinity of x̃, the first-order Taylor expansions of these expressions
with respect of ∆x = x− x̃ give

∂2ΦR
min

∂2x
(x̃)∆x+

∑

i∈{constraints}

λ̃i
∂mi

∂x
(x̃) = −

∂ΦR
min

∂x
(x̃) (7a)

For each constraint i,
∂mi

∂x
(x̃)∆x = 0 (7b)
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These conditions can be rewritten as a matrix expression

(

H M

M
T

0

)
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)

X

=
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0

)

C

(8)

with the matrices H (Hessian matrix of the function ΦR
min at x), B and M

defined as

H =

[

∂2ΦR
min

∂2x
(x̃)

]

(9a)

M =

[

∂mi

∂x
(x̃)

]

(9b)

B =

[

−
∂ΦR

min

∂x
(x̃)

]

(9c)

The estimation of variance-covariance matrix of the variable vector x at
x̃ consists of inversing HB named the bordered Hessian matrix, selecting the
subpart of this inverse matrix corresponding to the variable vector x and mul-
tiplying this submatrix by the squared goodness of fit.

The estimated uncertainties of the variable vector x elements corresponds
to the square root of the diagonal elements in the estimated variance-covariance
matrix.
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