Supplementary Materials

Fournier Bertrand, Jesse Sokolow, Philip Coppens

1 Extra constraint for the weighted least-squares (WLS) scaling method

In the WLS method described in the section 4.2 of the article, the scaling of different ratio data sets is performed by minimizing the error function $\epsilon_{\min }^{R}$. This function depends on the variable vector \mathbf{x} consisting of the different Ratio model variables,
$\epsilon_{\min }^{R}(\mathbf{x})=\sum_{i \in\{\text { sets }\}}\left[\sum_{\mathbf{H} \in\{\mathbf{H}\}^{i}}\left[\sum_{j \in\left\{R_{\text {obs }}\right\}_{\mathbf{H}}^{i}} w_{\mathrm{obs}}^{(i, j)}(\mathbf{H})\left(R_{\mathrm{obs}}^{(i, j)}(\mathbf{H})-R_{\text {model }}^{i}(\mathbf{H})\right)^{2}\right]\right]$
where $\{\mathbf{H}\}_{\text {unique }}^{i}$ is the set of unique reflections of data set $i,\left\{R_{\text {obs }}\right\}_{\mathbf{H}}^{i}$ is the set of observed ratios of the unique reflection \mathbf{H} in the data set $i, R_{\mathrm{obs}}^{(i, j)}(\mathbf{H})$ the $j^{\text {th }}$ observed ratio in the set $\left\{R_{\text {obs }}\right\}_{\mathbf{H}}^{i}$, and $w_{\text {obs }}^{(i, j)}(\mathbf{H})$ the corresponding weight (by default $w_{\mathrm{obs}}^{(i, j)}(\mathbf{H})=1 / s_{R_{\mathrm{obs}}^{(i, j)}(\mathbf{H})}^{2}$ with $s_{R_{\mathrm{obs}}^{(i, j)}(\mathbf{H})}^{2}$ the estimated variance of $\left.R_{\mathrm{obs}}^{(i, j)}(\mathbf{H})\right)$.

The ratio model of the unique reflection \mathbf{H} in data set i is defined as

$$
\begin{equation*}
\mathrm{R}_{\text {model }}^{i}(\mathbf{H}) \simeq K_{\text {ratio }}^{i}\left[1+Q^{i} \eta_{\text {model }}(\mathbf{H})\right] \tag{2}
\end{equation*}
$$

in which $\eta_{\text {model }}(\mathbf{H})$ is the calculated average η for the reflection \mathbf{H}, Q^{i} the relative population and $K_{\text {ratio }}^{i}$ the global ratio scaling factor of set i.

The minimization of $\epsilon_{\min }^{R}$ is done under the constraint $m_{1}=0$ defined in the section 4.2.2.

When the laser-ON and laser-OFF intensities are collected on the same sample with the same X-ray beam setting, all factors $K_{\text {ratio }}$ equal 1.0. If they are not, after appropriate corrections done the sets of intensities with and without laser-exposure do not share the same global scale. Thus, for each ratio data set i, a global ratio scaling factor $K_{\text {ratio }}^{i}$ must be refined and an extra constraint $m_{2}=0$ is necessary to properly scale the observations. This constraint consists in setting to 1.0 the intercept of the linear regression on the calculated average η variables $\eta_{\text {model }}$ as function of the squared reciprocal space resolution $\omega^{2}=\sin ^{2} \theta / \lambda^{2}$. The application of this constraint helps to decorrelate the factors $K_{\text {ratio }}$ and the relative populations Q. The expression of a linear regression
intercept is well known which leads to the following expression for the constrain $m_{2}=0$ with

$$
\begin{equation*}
m_{2}(\mathbf{x})=\frac{\sum_{X^{2}} \sum_{Y}-\sum_{X} \sum_{X Y}}{N_{\mathbf{H}} \sum_{X^{2}}-\left(\sum_{X}\right)^{2}} \tag{3}
\end{equation*}
$$

with $\sum_{X Y}, \sum_{Y}, \sum_{X}$ and $\sum_{X^{2}}$ defined as

$$
\begin{gather*}
\sum_{X Y}=\sum_{\mathbf{H} \in\{\mathbf{H}\}_{\text {unique }}^{\text {all }}} \eta_{\text {model }}(\mathbf{H}) \omega^{2}(\mathbf{H}) \tag{4a}\\
\sum_{Y}=\sum_{\mathbf{H} \in\{\mathbf{H}\}_{\text {unique }}^{\text {all }}} \eta_{\text {model }}(\mathbf{H}) \tag{4b}\\
\sum_{X}=\sum_{\mathbf{H} \in\{\mathbf{H}\}_{\text {unique }}^{\text {all }}} \omega^{2}(\mathbf{H}) \tag{4c}\\
\sum_{X^{2}}=\sum_{\mathbf{H} \in\{\mathbf{H}\}_{\text {unique }}^{\text {all }}} \omega^{4}(\mathbf{H}) \tag{4d}
\end{gather*}
$$

2 Estimation of standard deviations

The minimization of the error function $\Phi_{\min }^{R}$ under a set of linear constraints $\left\{m_{i}\right\}$ can be treated using the Lagrangian method as the optimization of the following function $\psi_{\min }^{R}$

$$
\begin{equation*}
\psi_{\min }^{R}(\mathbf{x}, \boldsymbol{\Lambda})=\Phi_{\min }^{R}(\mathbf{x})+\sum_{i \in\{\text { constraints }\}} \lambda_{i} m_{i}(\mathbf{x}) \tag{5}
\end{equation*}
$$

in which \mathbf{x} is the vector of the refined ratio model variables and $\boldsymbol{\Lambda}$ the vector of the lagrangian multipiers λ_{i}.

At the convergence of the $\psi_{\min }^{R}$ optimization at $(\tilde{\mathbf{x}} ; \tilde{\Lambda})$, the following relations are satisfied,

$$
\begin{equation*}
\frac{\partial \psi_{\min }^{R}}{\partial \mathbf{x}}(\mathbf{x}, \boldsymbol{\Lambda})=\frac{\partial \Phi_{\min }^{R}}{\partial \mathbf{x}}(\mathbf{x})+\sum_{i \in\{\text { constraints }\}} \lambda_{i} \frac{\partial m_{i}}{\partial \mathbf{x}}(\mathbf{x})=0 \tag{6a}
\end{equation*}
$$

For each constraint $i, \quad m_{i}(\mathbf{x})=0$
In the vicinity of $\tilde{\mathbf{x}}$, the first-order Taylor expansions of these expressions with respect of $\Delta \mathbf{x}=\mathbf{x}-\tilde{\mathbf{x}}$ give

$$
\begin{gather*}
\frac{\partial^{2} \Phi_{\min }^{\mathrm{R}}}{\partial^{2} \mathbf{x}}(\tilde{\mathbf{x}}) \Delta \mathbf{x}+\sum_{i \in\{\text { constraints }\}} \tilde{\lambda}_{i} \frac{\partial m_{i}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})=-\frac{\partial \Phi_{\min }^{\mathrm{R}}}{\partial \mathbf{x}}(\tilde{\mathbf{x}}) \tag{7a}\\
\text { For each constraint } i, \quad \frac{\partial m_{i}}{\partial \mathbf{x}}(\tilde{\mathbf{x}}) \Delta \mathbf{x}=0 \tag{7b}
\end{gather*}
$$

These conditions can be rewritten as a matrix expression

$$
\begin{array}{cc}
\left(\begin{array}{cc}
\mathbf{H} & \mathbf{M} \\
\mathbf{M}^{T} & 0
\end{array}\right) & \left(\begin{array}{c}
\Delta x \\
\mathbf{H}_{B}
\end{array}\right. \tag{8}\\
\left(\begin{array}{l}
\mathbf{X}
\end{array}\right) & \binom{\mathbf{B}}{0} \\
\mathbf{C}
\end{array}
$$

with the matrices \mathbf{H} (Hessian matrix of the function $\Phi_{\min }^{R}$ at \mathbf{x}), \mathbf{B} and \mathbf{M} defined as

$$
\begin{gather*}
\mathbf{H}=\left[\frac{\partial^{2} \Phi_{\min }^{R}}{\partial^{2} \mathbf{x}}(\tilde{\mathbf{x}})\right] \tag{9a}\\
\mathbf{M}=\left[\frac{\partial m_{i}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})\right] \tag{9b}\\
\mathbf{B}=\left[-\frac{\partial \Phi_{\min }^{R}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})\right] \tag{9c}
\end{gather*}
$$

The estimation of variance-covariance matrix of the variable vector \mathbf{x} at $\tilde{\mathbf{x}}$ consists of inversing \mathbf{H}_{B} named the bordered Hessian matrix, selecting the subpart of this inverse matrix corresponding to the variable vector \mathbf{x} and multiplying this submatrix by the squared goodness of fit.

The estimated uncertainties of the variable vector \mathbf{x} elements corresponds to the square root of the diagonal elements in the estimated variance-covariance matrix.

