Supplementary Materials

Fournier Bertrand, Jesse Sokolow, Philip Coppens

Extra constraint for the weighted least-squares 1 (WLS) scaling method

In the WLS method described in the section 4.2 of the article, the scaling of different ratio data sets is performed by minimizing the error function ϵ_{\min}^R . This function depends on the variable vector \mathbf{x} consisting of the different Ratio model variables,

$$\epsilon_{\min}^{R}(\mathbf{x}) = \sum_{i \in \{\text{sets}\}} \left[\sum_{\mathbf{H} \in \{\mathbf{H}\}^{i}} \left[\sum_{j \in \{R_{\text{obs}}\}_{\mathbf{H}}^{i}} w_{\text{obs}}^{(i,j)}(\mathbf{H}) \left(R_{\text{obs}}^{(i,j)}(\mathbf{H}) - R_{\text{model}}^{i}(\mathbf{H}) \right)^{2} \right] \right]$$
(1)

where $\{\mathbf{H}\}_{\text{unique}}^{i}$ is the set of unique reflections of data set $i, \{R_{\text{obs}}\}_{\mathbf{H}}^{i}$ is the set of observed ratios of the unique reflection **H** in the data set $i, R_{obs}^{(i,j)}(\mathbf{H})$ the j^{th} observed ratio in the set $\{R_{\text{obs}}\}_{\mathbf{H}}^{i}$, and $w_{\text{obs}}^{(i,j)}(\mathbf{H})$ the corresponding weight (by default $w_{\text{obs}}^{(i,j)}(\mathbf{H}) = 1/s_{R_{\text{obs}}^{(i,j)}(\mathbf{H})}^{2}$ with $s_{R_{\text{obs}}^{(i,j)}(\mathbf{H})}^{2}$ the estimated variance of $R_{obs}^{(i,j)}(\mathbf{H})$). The ratio model of the unique reflection \mathbf{H} in data set i is defined as

$$\mathbf{R}_{\mathrm{model}}^{i}(\mathbf{H}) \simeq K_{\mathrm{ratio}}^{i} \left[1 + Q^{i} \eta_{\mathrm{model}}(\mathbf{H}) \right]$$
(2)

in which $\eta_{\text{model}}(\mathbf{H})$ is the calculated average η for the reflection \mathbf{H}, Q^i the relative population and K_{ratio}^i the global ratio scaling factor of set *i*. The minimization of ϵ_{\min}^R is done under the constraint $m_1 = 0$ defined in the

section 4.2.2.

When the laser-ON and laser-OFF intensities are collected on the same sample with the same X-ray beam setting, all factors $K_{\rm ratio}$ equal 1.0. If they are not, after appropriate corrections done the sets of intensities with and without laser-exposure do not share the same global scale. Thus, for each ratio data set i, a global ratio scaling factor $K^i_{\rm ratio}$ must be refined and an extra constraint $m_2 = 0$ is necessary to properly scale the observations. This constraint consists in setting to 1.0 the intercept of the linear regression on the calculated average η variables η_{model} as function of the squared reciprocal space resolution $\omega^2 = \sin^2\theta/\lambda^2$. The application of this constraint helps to decorrelate the factors $K_{\rm ratio}$ and the relative populations Q. The expression of a linear regression intercept is well known which leads to the following expression for the constrain $m_2 = 0$ with

$$m_2(\mathbf{x}) = \frac{\sum_{X^2} \sum_{Y} - \sum_{X} \sum_{XY}}{N_{\mathbf{H}} \sum_{X^2} - (\sum_X)^2}$$
(3)

with \sum_{XY} , \sum_{Y} , \sum_{X} and \sum_{X^2} defined as

$$\sum_{XY} = \sum_{\mathbf{H} \in \{\mathbf{H}\}_{\text{unique}}^{\text{all}}} \eta_{\text{model}}(\mathbf{H}) \omega^2(\mathbf{H})$$
(4a)

$$\sum_{Y} = \sum_{\mathbf{H} \in \{\mathbf{H}\}_{\text{unique}}^{\text{all}}} \eta_{\text{model}}(\mathbf{H})$$
(4b)

$$\sum_{X} = \sum_{\mathbf{H} \in \{\mathbf{H}\}_{\text{unique}}^{\text{all}}} \omega^2(\mathbf{H})$$
(4c)

$$\sum_{X^2} = \sum_{\mathbf{H} \in \{\mathbf{H}\}_{\text{unique}}^{\text{all}}} \omega^4(\mathbf{H})$$
(4d)

2 Estimation of standard deviations

The minimization of the error function Φ_{\min}^R under a set of linear constraints $\{m_i\}$ can be treated using the Lagrangian method as the optimization of the following function ψ_{\min}^R

$$\psi_{\min}^{R}(\mathbf{x}, \mathbf{\Lambda}) = \Phi_{\min}^{R}(\mathbf{x}) + \sum_{i \in \{\text{constraints}\}} \lambda_{i} m_{i}(\mathbf{x})$$
(5)

in which \mathbf{x} is the vector of the refined ratio model variables and $\mathbf{\Lambda}$ the vector of the lagrangian multipiers λ_i .

At the convergence of the ψ_{\min}^R optimization at $(\tilde{\mathbf{x}}; \tilde{\Lambda})$, the following relations are satisfied,

$$\frac{\partial \psi_{\min}^R}{\partial \mathbf{x}}(\mathbf{x}, \mathbf{\Lambda}) = \frac{\partial \Phi_{\min}^R}{\partial \mathbf{x}}(\mathbf{x}) + \sum_{i \in \{\text{constraints}\}} \lambda_i \frac{\partial m_i}{\partial \mathbf{x}}(\mathbf{x}) = 0$$
(6a)

For each constraint $i, \quad m_i(\mathbf{x}) = 0$ (6b)

In the vicinity of $\tilde{\mathbf{x}}$, the first-order Taylor expansions of these expressions with respect of $\Delta \mathbf{x} = \mathbf{x} - \tilde{\mathbf{x}}$ give

$$\frac{\partial^2 \Phi_{\min}^{\mathrm{R}}}{\partial^2 \mathbf{x}}(\tilde{\mathbf{x}}) \Delta \mathbf{x} + \sum_{i \in \{\text{constraints}\}} \tilde{\lambda}_i \frac{\partial m_i}{\partial \mathbf{x}}(\tilde{\mathbf{x}}) = -\frac{\partial \Phi_{\min}^{\mathrm{R}}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})$$
(7a)

For each constraint *i*,
$$\frac{\partial m_i}{\partial \mathbf{x}}(\tilde{\mathbf{x}})\Delta \mathbf{x} = 0$$
 (7b)

These conditions can be rewritten as a matrix expression

$$\begin{pmatrix} \mathbf{H} & \mathbf{M} \\ \mathbf{M}^{\mathbf{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \mathbf{\Lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{B} \\ \mathbf{0} \end{pmatrix}$$

$$\mathbf{H}_{\mathbf{B}} \quad \mathbf{X} \quad \mathbf{C}$$

$$(8)$$

with the matrices ${\bf H}$ (Hessian matrix of the function Φ_{\min}^R at ${\bf x}),\,{\bf B}$ and ${\bf M}$ defined as

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 \Phi_{\min}^R}{\partial^2 \mathbf{x}} (\tilde{\mathbf{x}}) \end{bmatrix}$$
(9a)

$$\mathbf{M} = \begin{bmatrix} \frac{\partial m_i}{\partial \mathbf{x}} (\tilde{\mathbf{x}}) \end{bmatrix}$$
(9b)

$$\mathbf{B} = \left[-\frac{\partial \Phi_{\min}^R}{\partial \mathbf{x}} (\tilde{\mathbf{x}}) \right] \tag{9c}$$

The estimation of variance-covariance matrix of the variable vector \mathbf{x} at $\tilde{\mathbf{x}}$ consists of inversing \mathbf{H}_{B} named the bordered Hessian matrix, selecting the subpart of this inverse matrix corresponding to the variable vector \mathbf{x} and multiplying this submatrix by the squared goodness of fit.

The estimated uncertainties of the variable vector \mathbf{x} elements corresponds to the square root of the diagonal elements in the estimated variance-covariance matrix.