Supporting information for Acta Cryst. (2016). A72, doi:/10.1107/S2053273315021725

A table of geometrical ambiguities in powder indexing obtained by exhaustive search

R. Oishi-Tomiyasu

Some terminologies in the theory of quadratic forms are used herein. In particular, the following symmetric matrix (also called the *metric tensor* in crystallography) is always identified with a ternary quadratic form $f(\mathbf{x}) = \sum_{1 \le i \le j \le 3} s_{ij} x_i x_j$:

$$S := \begin{pmatrix} s_{11} & s_{12}/2 & s_{13}/2\\ s_{12}/2 & s_{22} & s_{23}/2\\ s_{13}/2 & s_{23}/2 & s_{33} \end{pmatrix}$$
(A.1)

The above S is singular if the determinant equals zero, and integral if all the s_{ij} $(1 \le i, j \le 3)$ are integers. For any ring R such as $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p$, two symmetric matrices S_1, S_2 are said to be equivalent over R, if there exists $w \in GL_3(R)$ such that $wS_1{}^tw = S_2$. For any $0 \ne v \in R^3$, tvSv is called a representation of S over R.

A Proof of Proposition 1

Proof of Proposition 1. For the proof, it may be assumed that S, S_2 have rational entries, because S and S_2 are simultaneously represented as finite sums $\sum_j \lambda_j T_j$, $\sum_j \lambda_j T_{2j}$, where λ_j are linearly independent over \mathbb{Q} , and every T_j , T_{2j} is rational and positive-definite (Lemma A.1). In the rational case, the proposition is proved by Lemma A.2.

Lemma A.1. Let S_i $(1 \le i \le m)$ be N_i -by- N_i positive-definite symmetric matrices with real coefficients. There are $\lambda_1, \ldots, \lambda_s \in \mathbb{R}_{>0}$ positive and linearly independent over \mathbb{Q} and N_i -by- N_i rational positive-definite symmetric matrices T_{ij} $(1 \le i \le m, 1 \le j \le s)$ such that every S_i is represented as a finite sum $S_i = \sum_{j=1}^s \lambda_j T_{ij}$.

Proof. Let v_{S_i} be the row vector of length $\frac{N_i(N_i+1)}{2}$ with the (k, l)-entry of S_i in the $(k + \frac{l(l-1)}{2})$ -th entry. In this case, $v := {}^t(v_{S_1}, \cdots, v_{S_m})$ is a column vector of length $\sum_{i=1}^m \frac{N_i(N_i+1)}{2}$. Using this v, a set P is defined by:

$$P := \left\{ I \subset \left\{ v_j : 1 \le j \le \sum_{i=1}^m \frac{N_i(N_i+1)}{2} \right\} : v_j \in I \text{ are linearly independent over } \mathbb{Q} \right\}. (A.2)$$

Let $\{t_1, \ldots, t_s\}$ be one of the maximal elements of P under inclusive order. When vectors ${}^t(t_1, \ldots, t_s)$ and ${}^t(1, \ldots, 1)$ of length s are denoted by \mathbf{t} and $\mathbf{1}_s$ respectively, there exists a $\sum_{i=1}^m \frac{N_i(N_i+1)}{2} \times s$ rational matrix C such that $v = C\mathbf{t}$. Furthermore, there exists $\epsilon > 0$ such that for any *s*-by-*s* matrix U with entries $|u_{kl}| < \epsilon$, every column ${}^{t}(v_{T_1}, \cdots, v_{T_m})$ of $C(\mathbf{t} {}^{t}\mathbf{1}_s - U)$ corresponds to m positive-definite symmetric matrices T_1, \ldots, T_m of size N_i $(1 \le i \le m)$.

If ${}^{t}\mathbf{1}_{s}U^{-1}\mathbf{t} \neq 1$, we have the following equations (I_{s} is the identity matrix of size s):

$$(\mathbf{t}^{t}\mathbf{1}_{s}-U)^{-1} = U^{-1}(({}^{t}\mathbf{1}_{s}U^{-1}\mathbf{t}-1)^{-1}\mathbf{t}^{t}\mathbf{1}_{s}U^{-1}-I_{s}), \qquad (A.3)$$

$$(\mathbf{t}^{t}\mathbf{1}_{s}-U)^{-1}\mathbf{t} = (^{t}\mathbf{1}_{s}U^{-1}\mathbf{t}-1)^{-1}U^{-1}\mathbf{t}.$$
 (A.4)

If all the entries of $U^{-1}\mathbf{t}$ are negative, we have ${}^{t}\mathbf{1}_{s}U^{-1}\mathbf{t} < 0$, hence every entry of $(\mathbf{t}^{t}\mathbf{1}_{s} - U)^{-1}\mathbf{t}$ is positive. Fix $U := (u_{kl}) \in GL_{s}(\mathbb{R})$ from those having a rational $\mathbf{t}^{t}\mathbf{1}_{s} - U$ and $|u_{kl}| < \epsilon$. Let T_{ij} $(1 \le i \le m, 1 \le j \le s)$ be N_{i} -by- N_{i} symmetric matrices satisfying $C(\mathbf{t}^{t}\mathbf{1}_{s} - U) = (v_{T_{ij}})$. In this case, every T_{ij} is rational and positive definite by the choice of U. Owing to the following equation, S_{i} is represented as a linear sum of T_{ij} with positive coefficients:

$$v = C\mathbf{t} = (v_{T_{ij}})(\mathbf{t}^{t}\mathbf{1}_m - U)^{-1}\mathbf{t}.$$
(A.5)

Hence, the statement is proved.

For any rings $R_2 \subseteq R$ and an N-by-N symmetric matrix S with entries in R_2 , let $\Lambda_R(S)$ be the set $\{{}^{t}vSv: 0 \neq v \in R^N\}$ consisting of representations of S over R. If $0 \in \Lambda_R(S)$, S is said to be *isotropic* over R. Otherwise, S is *anisotropic* over R.

Lemma A.2. Suppose that an N-by-N symmetric matrix S is rational and non-singular, and a symmetric matrix S_2 of size $1 \leq N_2 < \min\{4, N\}$ is rational and anisotropic over \mathbb{Q} . In this case, $\Lambda_{\mathbb{Z}}(S) \not\subset \Lambda_{\mathbb{Z}}(S_2)$ holds.

Proof. We assume $N_2 + 1 = N = 4$, because the other cases easily follow from this. Since S is not singular, it satisfies $\Lambda_{\mathbb{Q}_p}(S) \supset \mathbb{Q}_p^{\times}$ for any finite prime p. On the other hand, there exists a finite prime p such that $\Lambda_{\mathbb{Q}_p}(S_2) \not\supseteq \mathbb{Q}_p^{\times}$ (cf. Corollary 2 of Theorem 4.1 in Chapter 6, Cassels (1978)). If $\Lambda_{\mathbb{Z}}(S) \subset \Lambda_{\mathbb{Z}}(S_2)$, $\Lambda_{\mathbb{Q}_p}(S) \subset \Lambda_{\mathbb{Q}_p}(S_2)$ is required for any p. This is a contradiction.

B Proof of Proposition 2

Two lattices in \mathbb{R}^3 are said to be *derivative* of each other if their metric tensors S_1 , S_2 are equivalent over \mathbb{Q} :

Remaining proof of Proposition 2. The "if" part is proved herein; if there exists such an a, S_1 and S_2 are equivalent over \mathbb{Q}_p for any $p \neq 2$ by Lemma B.1. They are also equivalent over \mathbb{R} , because they are positive-definite, hence they have the same Hasse-Minkowski symbols c_p for all primes p

including 2, ∞ (Lemma 1.1, Chapter 6, Cassels(1978)). Therefore they are equivalent over \mathbb{Q} by the weak Hasse principle (*cf.* Theorem 1.2, Chapter 6, Cassels(1978)).

Lemma B.1. Suppose that p is an odd prime and S_1 and S_2 are 3-by-3 non-singular symmetric matrices with \mathbb{Q}_p entries and det $S_1 = a^2 \det S_2$ holds for some $a \in \mathbb{Q}_p$. If S_1 and S_2 have the same representations over \mathbb{Z}_p , they are equivalent over \mathbb{Q}_p .

Proof. By replacing S_1 , S_2 with cS_1 , cS_2 for some $c \in \mathbb{Q}_p$, we may assume that all their entries belong to \mathbb{Z}_p , and 1 is represented by both of S_1 and S_2 over \mathbb{Z}_p . Take $n_1, n_2 \in \mathbb{Z}$ and $u_1, u_2 \in \mathbb{Z}_p^{\times}$ so that det $S_i = p^{n_i} u_i \neq 0$ is satisfied for both i = 1, 2.

In this case, for each i = 1, 2, there exists $t_i \in \mathbb{Z}_p^{\times}$ and $0 \leq l_i \leq \frac{n_i}{2}$ such that S_i is equivalent over \mathbb{Z}_p to the following:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & p^{l_i}t_i & 0 \\ 0 & 0 & p^{n_i - l_i}t_i^{-1}u_i \end{pmatrix}$$
 (A.6)

We shall show that we can choose the same l, t as l_1, l_2 and t_1, t_2 . If so, each S_i is equivalent over \mathbb{Z}_p to the following:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & p^l t & 0 \\ 0 & 0 & (p^l t)^{-1} \det S_i \end{pmatrix},$$
 (A.7)

From the assumption on det S_i , S_1 and S_2 are equivalent over \mathbb{Q}_p as a result.

If $l_1 < n_1 - l_1$, then $l_1 = l_2$ and $\left(\frac{t_1}{p}\right) = \left(\frac{t_2}{p}\right)$ are obtained immediately. Hence, t_1, t_2 can be set to a common value $t \in \mathbb{Z}_p^{\times}$. Otherwise, $l_1 = n_1 - l_1$, hence S_1 is equivalent to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & p^{l_1}s & 0 \\ 0 & 0 & p^{l_1}s^{-1}u_1 \end{pmatrix}$ for any $s \in \mathbb{Z}^{\times}$ (cf. Lemma 3.4, Chapter8, Cassels (1978)). As a result, $l_1 = l_2$ and $t_1 = t_2$ may be

assumed even in this case. \Box

C Proof of Proposition 3

What follows, coordinates in the real and reciprocal space are represented as a row vector and a column vector respectively. Furthermore, group actions on the spaces are represented as a right and left action respectively.

Any congruent transformation of the real space \mathbb{R}^N (N = 3 is not necessary in this section) is represented as a composition of the orthogonal group O(N) and a translation; if σ is a congruent transformation of \mathbb{R}^N , there exist $\tau \in O(N)$ and $\nu \in \mathbb{R}^N$ such that:

$$x^{\sigma} = x^{\tau} + \nu \text{ for any } x \in \mathbb{R}^{N}.$$
(A.8)

Such a σ is denoted by $\{\tau | \nu\}$.

A crystallographic group G is defined as a discrete and cocompact subgroup of the congruence transformation group. The translation group Land the point group R_G and of G are defined by:

$$R_G := \{ \sigma \in O(N) : \{ \sigma | \nu \} \text{ for some } \nu \in \mathbb{R}^N \},$$
(A.9)

$$L := \{ \nu \in \mathbb{R}^N : \{ 1_N | \nu \} \in G \}.$$
 (A.10)

In general, G is a group extension of L by R_G (*i.e.*, L is the kernel of the natural onto map $G \twoheadrightarrow R_G$: $\{\sigma | \nu\} \mapsto \sigma$). From the definition of L, for any $\{\sigma | \nu_\sigma\} \in G$, the class $\nu_\sigma + L \in \mathbb{R}^N/L$ is uniquely determined. Furthermore, the map $R_G \to \mathbb{R}^N/L$: $\sigma \mapsto \nu_\sigma + L$ satisfies

$$\nu_{\sigma\tau} \equiv \nu_{\sigma}^{\tau} + \nu_{\tau} \mod L. \tag{A.11}$$

Such a map is called a 1-cocycle in the theory of group cohomology, and corresponds to a cohomology class in $[\nu_{\sigma}] \in H^1(R_G, \mathbb{R}^N/L)$.

For any crystallographic group G and a finite subgroup $H \subset G$, the following $\Gamma_{ext}(G, H)$ defines the set of systematic absences:

$$\Gamma_{ext}(G,H) := \left\{ 0 \neq l^* \in L^* : \frac{\sum_{\sigma \in H \setminus G/L} e^{2\pi i x^{\sigma} \cdot l^*} = 0}{\text{for any } x \in \mathbb{R}^N \text{ stabilized by } H} \right\}, (A.12)$$

The following lemma provides a method to compute $\Gamma_{ext}(G, H)$ listed in the International Tables Vol. A (Hahn(1983)):

Lemma C.1. Let R_H be the image of H by the natural onto map $G \to R_G : \{\sigma | \nu_\sigma\} \mapsto \sigma$. For fixed $l^* \in L^*$, the equivalence relation among the right cosets $R_H \setminus R_G$ is defined by:

$$R_H \sigma_1 \overset{l^*}{\sim} R_H \sigma_2 \iff \sum_{\sigma \in R_H \sigma_1} \sigma l^* = \sum_{\sigma \in R_H \sigma_2} \sigma l^*.$$
(A.13)

For any $x \in \mathbb{R}^N$ stabilized by H, $l^* \in L^*$ belongs to $\Gamma_{ext}(G, H)$ if and only if for every $R_H \sigma_1 \in R_H \setminus R$, we have

$$\sum_{I \sigma_2 \sim R_H \sigma_1} e^{2\pi i x^{\{\sigma_2 \mid \nu_{\sigma_2}\}} \cdot l^*} = 0.$$
(A.14)

Proof. For any $x \in \mathbb{R}^N$ stabilized by $H, l^* \in \Gamma_{ext}(G, H)$ holds if and only if

 R_F

 $\sum_{R_H \sigma_1 \in R_H \setminus R} e^{2\pi i ((x+\delta x)^{\sigma_1} + \nu_{\sigma_1}) \cdot l^*} = 0 \text{ for any } \delta x \in \mathbb{R}^N \text{ stabilized by } R_H (A.15)$

Furthermore,

$$\delta x^{\sigma_1} \cdot l^* = \delta x^{\sigma_2} \cdot l^* \text{ for any } \delta x \in \mathbb{R}^N \text{ stabilized by } R_H$$

$$\iff \sum_{\tau \in R_H} (\delta \tilde{x}^{\tau \sigma_1} - \delta \tilde{x}^{\tau \sigma_2}) \cdot l^* = 0 \text{ for any } \delta \tilde{x} \in \mathbb{R}^N$$

$$\iff \sum_{\tau \in R_H} \delta \tilde{x} \cdot (\tau \sigma_1 l^* - \tau \sigma_2 l^*) = 0 \text{ for any } \delta \tilde{x} \in \mathbb{R}^N$$

$$\iff \sum_{\tau \in R_H} \tau (\sigma_1 l^* - \sigma_2 l^*) = 0 \iff R_H \sigma_1 \overset{l^*}{\sim} R_H \sigma_2. \quad (A.16)$$

Hence, (A.15) holds if and only if the following does for all δx stabilized by H:

$$\sum_{[\sigma_1]\in (R_H\setminus R)/^{l^*}_{\sim}} e^{2\pi i \delta x^{\sigma_1 \cdot l^*}} \sum_{R_H \sigma_2 \overset{l^*}{\sim} R_H \sigma_1} e^{2\pi i (x^{\sigma_2} + \nu_{\sigma_2}) \cdot l^*} = 0, \qquad (A.17)$$

which leads to the statement.

Proof of Proposition 3. If x is stabilized by
$$H$$
, $\nu_{\tau} \equiv x - x^{\tau} \mod L$ holds
for any $\tau \in R_H$. Hence, the cohomology class $[\nu_{\sigma}] \in H^1(R_G, \mathbb{R}^N/L)$ of the
1-cocycle $\sigma \mapsto \nu_{\sigma}$ is mapped to 0 by the natural map $H^1(R_G, \mathbb{R}^N/L) \longrightarrow$
 $H^1(R_H, \mathbb{R}^N/L)$. As a result, $[\nu_{\tau}]$ is also mapped to 0 by $H^1(R_G, \mathbb{R}^N/L) \xrightarrow{\times M/m} H^1(R_G, \mathbb{R}^N/L)$, where m is the order of R_H (cf. Proposition 6 in Chap.
VII of Serre (1980)). Thus, for any $\sigma \in R_G$, there exist $y \in \mathbb{R}^N$ and $\mu_{\sigma} \in (M/m)^{-1}L$ such that $\nu_{\sigma} \equiv y - y^{\sigma} + \mu_{\sigma} \mod L$. Hence, $x - y \equiv (x - y)^{\tau} + \mu_{\tau} \mod L$ for any $\tau \in R_H$, therefore $m(x - y) - \sum_{\tau \in R_H} (x - y)^{\tau} \in (M/m)^{-1}L$ is
obtained. If $u \in \mathbb{R}^N$ with $mu = x - y$ is fixed, we have $(x - y) - \sum_{\tau \in R_H} u^{\tau} \in M^{-1}L$. As a result, for any $\sigma \in R_G$, there exists $\xi_{\sigma} \in M^{-1}L$ such that ν_{σ}
is represented as follows:

$$\nu_{\sigma} \equiv x - x^{\sigma} - \sum_{\tau \in R_H} u^{\tau} + \sum_{\tau \in R_H} u^{\tau\sigma} + \xi_{\sigma}.$$
 (A.18)

From Lemma C.1, $l^* \in L^*$ belongs to $\Gamma_{ext}(G, H)$ if and only if the following holds for any $R_H \sigma_1 \in R_H \setminus R_G$:

$$\sum_{R_{H}\sigma_{2}\overset{l^{*}}{\sim}R_{H}\sigma_{1}} e^{2\pi i (x^{\sigma_{2}}+\nu_{\sigma_{2}})\cdot l^{*}} = \sum_{R_{H}\sigma_{2}\overset{l^{*}}{\sim}R_{H}\sigma_{1}} e^{2\pi i (x-\sum_{\tau\in R_{H}}u^{\tau}+\sum_{\tau\in R_{H}}u^{\tau}+\sum_{\tau\in R_{H}}u^{\tau\sigma_{2}}+\xi_{\sigma_{2}})\cdot l^{*}}$$
$$= e^{2\pi i (x-\sum_{\tau\in R_{H}}u^{\tau})\cdot l^{*}} e^{2\pi i u\cdot\sum_{\tau\in R_{H}}\tau\sigma_{1}l^{*}} \sum_{R_{H}\sigma_{2}\overset{l^{*}}{\sim}R_{H}\sigma_{1}} e^{2\pi i \xi_{\sigma_{2}}\cdot l^{*}} = 0 (A.19)$$

This is impossible if l^* belongs to ML^* .