A table of geometrical ambiguities in powder indexing obtained by exhaustive search

R. Oishi-Tomiyasu

Some terminologies in the theory of quadratic forms are used herein. In particular, the following symmetric matrix (also called the metric tensor in crystallography) is always identified with a ternary quadratic form $f(\mathbf{x})=$ $\sum_{1 \leq i \leq j \leq 3} s_{i j} x_{i} x_{j}:$

$$
S:=\left(\begin{array}{ccc}
s_{11} & s_{12} / 2 & s_{13} / 2 \tag{A.1}\\
s_{12} / 2 & s_{22} & s_{23} / 2 \\
s_{13} / 2 & s_{23} / 2 & s_{33}
\end{array}\right)
$$

The above S is singular if the determinant equals zero, and integral if all the $s_{i j}(1 \leq i, j \leq 3)$ are integers. For any ring R such as $\mathbb{Z}, \mathbb{Z}_{p}, \mathbb{Q}_{p}$, two symmetric matrices S_{1}, S_{2} are said to be equivalent over R, if there exists $w \in G L_{3}(R)$ such that $w S_{1}{ }^{t} w=S_{2}$. For any $0 \neq v \in R^{3},{ }^{t} v S v$ is called a representation of S over R.

A Proof of Proposition 1

Proof of Proposition 1. For the proof, it may be assumed that S, S_{2} have rational entries, because S and S_{2} are simultaneously represented as finite sums $\sum_{j} \lambda_{j} T_{j}, \sum_{j} \lambda_{j} T_{2 j}$, where λ_{j} are linearly independent over \mathbb{Q}, and every $T_{j}, T_{2 j}$ is rational and positive-definite (Lemma A.1). In the rational case, the proposition is proved by Lemma A.2.

Lemma A.1. Let $S_{i}(1 \leq i \leq m)$ be N_{i}-by- N_{i} positive-definite symmetric matrices with real coefficients. There are $\lambda_{1}, \ldots, \lambda_{s} \in \mathbb{R}_{>0}$ positive and linearly independent over \mathbb{Q} and N_{i}-by- N_{i} rational positive-definite symmetric matrices $T_{i j}(1 \leq i \leq m, 1 \leq j \leq s)$ such that every S_{i} is represented as a finite sum $S_{i}=\sum_{j=1}^{s} \lambda_{j} T_{i j}$.

Proof. Let $v_{S_{i}}$ be the row vector of length $\frac{N_{i}\left(N_{i}+1\right)}{2}$ with the (k, l)-entry of S_{i} in the $\left(k+\frac{l(l-1)}{2}\right)$-th entry. In this case, $v:={ }^{t}\left(v_{S_{1}}, \cdots, v_{S_{m}}\right)$ is a column vector of length $\sum_{i=1}^{m} \frac{N_{i}\left(N_{i}+1\right)}{2}$. Using this v, a set P is defined by:
$P:=\left\{I \subset\left\{v_{j}: 1 \leq j \leq \sum_{i=1}^{m} \frac{N_{i}\left(N_{i}+1\right)}{2}\right\}: v_{j} \in I\right.$ are linearly independent over $\left.\mathbb{Q}\right\}$
Let $\left\{t_{1}, \ldots, t_{s}\right\}$ be one of the maximal elements of P under inclusive order. When vectors ${ }^{t}\left(t_{1}, \ldots, t_{s}\right)$ and ${ }^{t}(1, \ldots, 1)$ of length s are denoted by \mathbf{t} and $\mathbf{1}_{s}$ respectively, there exists a $\sum_{i=1}^{m} \frac{N_{i}\left(N_{i}+1\right)}{2} \times s$ rational matrix C such
that $v=C \mathbf{t}$. Furthermore, there exists $\epsilon>0$ such that for any s-by- s matrix U with entries $\left|u_{k l}\right|<\epsilon$, every column ${ }^{t}\left(v_{T_{1}}, \cdots, v_{T_{m}}\right)$ of $C\left(\mathbf{t}^{t} \mathbf{1}_{s}-U\right)$ corresponds to m positive-definite symmetric matrices T_{1}, \ldots, T_{m} of size N_{i} $(1 \leq i \leq m)$.

If ${ }^{t} \mathbf{1}_{s} U^{-1} \mathbf{t} \neq 1$, we have the following equations (I_{s} is the identity matrix of size s):

$$
\begin{align*}
\left(\mathbf{t}^{\mathbf{t}} \mathbf{1}_{s}-U\right)^{-1} & =U^{-1}\left(\left({ }^{\mathbf{t}} \mathbf{1}_{s} U^{-1} \mathbf{t}-1\right)^{-1} \mathbf{t}^{\mathrm{t}} \mathbf{1}_{s} U^{-1}-I_{s}\right), \tag{A.3}\\
\left(\mathbf{t}^{t} \mathbf{1}_{s}-U\right)^{-1} \mathbf{t} & =\left({ }^{\mathbf{t}} \mathbf{1}_{s} U^{-1} \mathbf{t}-1\right)^{-1} U^{-1} \mathbf{t} . \tag{A.4}
\end{align*}
$$

If all the entries of $U^{-1} \mathbf{t}$ are negative, we have ${ }^{t}{ }_{1} U^{-1} \mathbf{t}<0$, hence every entry of $\left(\mathbf{t}^{t} \mathbf{1}_{s}-U\right)^{-1} \mathbf{t}$ is positive. Fix $U:=\left(u_{k l}\right) \in G L_{s}(\mathbb{R})$ from those having a rational $\mathbf{t}^{t} \mathbf{1}_{s}-U$ and $\left|u_{k l}\right|<\epsilon$. Let $T_{i j}(1 \leq i \leq m, 1 \leq j \leq s)$ be N_{i}-by- N_{i} symmetric matrices satisfying $C\left(\mathbf{t}^{t} \mathbf{1}_{s}-U\right)=\left(v_{T_{i j}}\right)$. In this case, every $T_{i j}$ is rational and positive definite by the choice of U. Owing to the following equation, S_{i} is represented as a linear sum of $T_{i j}$ with positive coefficients:

$$
\begin{equation*}
v=C \mathbf{t}=\left(v_{T_{i j}}\right)\left(\mathbf{t}^{t} \mathbf{1}_{m}-U\right)^{-1} \mathbf{t} . \tag{A.5}
\end{equation*}
$$

Hence, the statement is proved.
For any rings $R_{2} \subseteq R$ and an N-by- N symmetric matrix S with entries in R_{2}, let $\Lambda_{R}(S)$ be the set $\left\{{ }^{t} v S v: 0 \neq v \in R^{N}\right\}$ consisting of representations of S over R. If $0 \in \Lambda_{R}(S), S$ is said to be isotropic over R. Otherwise, S is anisotropic over R.

Lemma A.2. Suppose that an $N-b y-N$ symmetric matrix S is rational and non-singular, and a symmetric matrix S_{2} of size $1 \leq N_{2}<\min \{4, N\}$ is rational and anisotropic over \mathbb{Q}. In this case, $\Lambda_{\mathbb{Z}}(S) \not \subset \Lambda_{\mathbb{Z}}\left(S_{2}\right)$ holds.

Proof. We assume $N_{2}+1=N=4$, because the other cases easily follow from this. Since S is not singular, it satisfies $\Lambda_{\mathbb{Q}_{p}}(S) \supset \mathbb{Q}_{p}^{\times}$for any finite prime p. On the other hand, there exists a finite prime p such that $\Lambda_{\mathbb{Q}_{p}}\left(S_{2}\right) \not \supset \mathbb{Q}_{p}^{\times}(c f$. Corollary 2 of Theorem 4.1 in Chapter 6, Cassels (1978)). If $\Lambda_{\mathbb{Z}}(S) \subset \Lambda_{\mathbb{Z}}\left(S_{2}\right), \Lambda_{\mathbb{Q}_{p}}(S) \subset \Lambda_{\mathbb{Q}_{p}}\left(S_{2}\right)$ is required for any p. This is a contradiction.

B Proof of Proposition 2

Two lattices in \mathbb{R}^{3} are said to be derivative of each other if their metric tensors S_{1}, S_{2} are equivalent over \mathbb{Q} :

Remaining proof of Proposition 2. The "if" part is proved herein; if there exists such an a, S_{1} and S_{2} are equivalent over \mathbb{Q}_{p} for any $p \neq 2$ by Lemma B.1. They are also equivalent over \mathbb{R}, because they are positive-definite, hence they have the same Hasse-Minkowski symbols c_{p} for all primes p
including 2, ∞ (Lemma 1.1, Chapter 6, Cassels(1978)). Therefore they are equivalent over \mathbb{Q} by the weak Hasse principle ($c f$. Theorem 1.2, Chapter 6, Cassels(1978)).

Lemma B.1. Suppose that p is an odd prime and S_{1} and S_{2} are $3-b y-3$ non-singular symmetric matrices with \mathbb{Q}_{p} entries and $\operatorname{det} S_{1}=a^{2} \operatorname{det} S_{2}$ holds for some $a \in \mathbb{Q}_{p}$. If S_{1} and S_{2} have the same representations over \mathbb{Z}_{p}, they are equivalent over \mathbb{Q}_{p}.
Proof. By replacing S_{1}, S_{2} with $c S_{1}, c S_{2}$ for some $c \in \mathbb{Q}_{p}$, we may assume that all their entries belong to \mathbb{Z}_{p}, and 1 is represented by both of S_{1} and S_{2} over \mathbb{Z}_{p}. Take $n_{1}, n_{2} \in \mathbb{Z}$ and $u_{1}, u_{2} \in \mathbb{Z}_{p}^{\times}$so that $\operatorname{det} S_{i}=p^{n_{i}} u_{i} \neq 0$ is satisfied for both $i=1,2$.

In this case, for each $i=1,2$, there exists $t_{i} \in \mathbb{Z}_{p}^{\times}$and $0 \leq l_{i} \leq \frac{n_{i}}{2}$ such that S_{i} is equivalent over \mathbb{Z}_{p} to the following:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{A.6}\\
0 & p^{l_{i}} t_{i} & 0 \\
0 & 0 & p^{n_{i}-l_{i}} t_{i}^{-1} u_{i}
\end{array}\right)
$$

We shall show that we can choose the same l, t as l_{1}, l_{2} and t_{1}, t_{2}. If so, each S_{i} is equivalent over \mathbb{Z}_{p} to the following:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{A.7}\\
0 & p^{l} t & 0 \\
0 & 0 & \left(p^{l} t\right)^{-1} \operatorname{det} S_{i}
\end{array}\right)
$$

From the assumption on $\operatorname{det} S_{i}, S_{1}$ and S_{2} are equivalent over \mathbb{Q}_{p} as a result.
If $l_{1}<n_{1}-l_{1}$, then $l_{1}=l_{2}$ and $\left(\frac{t_{1}}{p}\right)=\left(\frac{t_{2}}{p}\right)$ are obtained immediately. Hence, t_{1}, t_{2} can be set to a common value $t \in \mathbb{Z}_{p}^{\times}$. Otherwise, $l_{1}=n_{1}-l_{1}$, hence S_{1} is equivalent to $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & p^{l_{1}} s & 0 \\ 0 & 0 & p^{l_{1}} s^{-1} u_{1}\end{array}\right)$ for any $s \in \mathbb{Z}^{\times}(c f$. Lemma 3.4, Chapter8, Cassels (1978)). As a result, $l_{1}=l_{2}$ and $t_{1}=t_{2}$ may be assumed even in this case.

C Proof of Proposition 3

What follows, coordinates in the real and reciprocal space are represented as a row vector and a column vector respectively. Furthermore, group actions on the spaces are represented as a right and left action respectively.

Any congruent transformation of the real space $\mathbb{R}^{N}(N=3$ is not necessary in this section) is represented as a composition of the orthogonal group $O(N)$ and a translation; if σ is a congruent transformation of \mathbb{R}^{N}, there exist $\tau \in O(N)$ and $\nu \in \mathbb{R}^{N}$ such that:

$$
\begin{equation*}
x^{\sigma}=x^{\tau}+\nu \text { for any } x \in \mathbb{R}^{N} . \tag{A.8}
\end{equation*}
$$

Such a σ is denoted by $\{\tau \mid \nu\}$.
A crystallographic group G is defined as a discrete and cocompact subgroup of the congruence transformation group. The translation group L and the point group R_{G} and of G are defined by:

$$
\begin{align*}
R_{G} & :=\left\{\sigma \in O(N):\{\sigma \mid \nu\} \text { for some } \nu \in \mathbb{R}^{N}\right\}, \tag{A.9}\\
L & :=\left\{\nu \in \mathbb{R}^{N}:\left\{1_{N} \mid \nu\right\} \in G\right\} . \tag{A.10}
\end{align*}
$$

In general, G is a group extension of L by R_{G} (i.e., L is the kernel of the natural onto map $\left.G \rightarrow R_{G}:\{\sigma \mid \nu\} \mapsto \sigma\right)$. From the definition of L, for any $\left\{\sigma \mid \nu_{\sigma}\right\} \in G$, the class $\nu_{\sigma}+L \in \mathbb{R}^{N} / L$ is uniquely determined. Furthermore, the map $R_{G} \rightarrow \mathbb{R}^{N} / L: \sigma \mapsto \nu_{\sigma}+L$ satisfies

$$
\begin{equation*}
\nu_{\sigma \tau} \equiv \nu_{\sigma}^{\tau}+\nu_{\tau} \bmod L . \tag{A.11}
\end{equation*}
$$

Such a map is called a 1-cocycle in the theory of group cohomology, and corresponds to a cohomology class in $\left[\nu_{\sigma}\right] \in H^{1}\left(R_{G}, \mathbb{R}^{N} / L\right)$.

For any crystallographic group G and a finite subgroup $H \subset G$, the following $\Gamma_{e x t}(G, H)$ defines the set of systematic absences:

$$
\Gamma_{e x t}(G, H):=\left\{0 \neq l^{*} \in L^{*}: \begin{array}{c}
\sum_{\sigma \in H \backslash G / L} e^{2 \pi i x^{\sigma} \cdot l^{*}}=0 \tag{A.12}\\
\text { for any } x \in \mathbb{R}^{N} \text { stabilized by } H
\end{array}\right\},(
$$

The following lemma provides a method to compute $\Gamma_{e x t}(G, H)$ listed in the International Tables Vol. A (Hahn(1983)):
Lemma C.1. Let R_{H} be the image of H by the natural onto map $G \rightarrow$ $R_{G}:\left\{\sigma \mid \nu_{\sigma}\right\} \mapsto \sigma$. For fixed $l^{*} \in L^{*}$, the equivalence relation among the right cosets $R_{H} \backslash R_{G}$ is defined by:

$$
\begin{equation*}
R_{H} \sigma_{1} \stackrel{l^{*}}{\sim} R_{H} \sigma_{2} \underset{d e f}{\Longleftrightarrow} \sum_{\sigma \in R_{H} \sigma_{1}} \sigma l^{*}=\sum_{\sigma \in R_{H} \sigma_{2}} \sigma l^{*} \tag{A.13}
\end{equation*}
$$

For any $x \in \mathbb{R}^{N}$ stabilized by $H, l^{*} \in L^{*}$ belongs to $\Gamma_{\text {ext }}(G, H)$ if and only if for every $R_{H} \sigma_{1} \in R_{H} \backslash R$, we have

$$
\begin{equation*}
\sum_{\substack{c \neq \\ R_{H} \sigma_{2} \sim R_{H} \sigma_{1}}} e^{2 \pi i x^{\left\{\sigma_{2} \mid \nu_{\sigma_{2}}\right\}} \cdot l^{*}}=0 . \tag{A.14}
\end{equation*}
$$

Proof. For any $x \in \mathbb{R}^{N}$ stabilized by $H, l^{*} \in \Gamma_{e x t}(G, H)$ holds if and only if

$$
\begin{equation*}
\sum_{R_{H} \sigma_{1} \in R_{H} \backslash R} e^{2 \pi i\left((x+\delta x)^{\sigma_{1}}+\nu_{\sigma_{1}}\right) \cdot l^{*}}=0 \text { for any } \delta x \in \mathbb{R}^{N} \text { stabilized by } R_{H}(\cdot A \tag{.A.15}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
& \delta x^{\sigma_{1}} \cdot l^{*}=\delta x^{\sigma_{2}} \cdot l^{*} \text { for any } \delta x \in \mathbb{R}^{N} \text { stabilized by } R_{H} \\
& \Longleftrightarrow \quad \sum_{\tau \in R_{H}}\left(\delta \tilde{x}^{\tau \sigma_{1}}-\delta \tilde{x}^{\tau \sigma_{2}}\right) \cdot l^{*}=0 \text { for any } \delta \tilde{x} \in \mathbb{R}^{N} \\
& \Longleftrightarrow \sum_{\tau \in R_{H}} \delta \tilde{x} \cdot\left(\tau \sigma_{1} l^{*}-\tau \sigma_{2} l^{*}\right)=0 \text { for any } \delta \tilde{x} \in \mathbb{R}^{N} \\
& \Longleftrightarrow \sum_{\tau \in R_{H}} \tau\left(\sigma_{1} l^{*}-\sigma_{2} l^{*}\right)=0 \Longleftrightarrow R_{H} \sigma_{1} \stackrel{l^{*}}{\sim} R_{H} \sigma_{2} . \tag{A.16}
\end{align*}
$$

Hence, (A.15) holds if and only if the following does for all δx stabilized by H :

$$
\begin{equation*}
\sum_{\left[\sigma_{1}\right] \in\left(R_{H} \backslash R\right) /^{*^{*}}} e^{2 \pi i \delta x^{\sigma_{1} \cdot l^{*}}} \sum_{R_{H} \sigma_{2} \sim R_{H} \sigma_{1}} e^{2 \pi i\left(x^{\left.\sigma_{2}+\nu_{\sigma_{2}}\right) \cdot l^{*}}=0, ~, ~, ~\right.} \tag{A.17}
\end{equation*}
$$

which leads to the statement.
Proof of Proposition 3. If x is stabilized by $H, \nu_{\tau} \equiv x-x^{\tau} \bmod L$ holds for any $\tau \in R_{H}$. Hence, the cohomology class $\left[\nu_{\sigma}\right] \in H^{1}\left(R_{G}, \mathbb{R}^{N} / L\right)$ of the 1-cocycle $\sigma \mapsto \nu_{\sigma}$ is mapped to 0 by the natural map $H^{1}\left(R_{G}, \mathbb{R}^{N} / L\right) \longrightarrow$ $H^{1}\left(R_{H}, \mathbb{R}^{N} / L\right)$. As a result, $\left[\nu_{\tau}\right]$ is also mapped to 0 by $H^{1}\left(R_{G}, \mathbb{R}^{N} / L\right) \xrightarrow{\times M / m}$ $H^{1}\left(R_{G}, \mathbb{R}^{N} / L\right)$, where m is the order of R_{H} (cf. Proposition 6 in Chap. VII of Serre (1980)). Thus, for any $\sigma \in R_{G}$, there exist $y \in \mathbb{R}^{N}$ and $\mu_{\sigma} \in$ $(M / m)^{-1} L$ such that $\nu_{\sigma} \equiv y-y^{\sigma}+\mu_{\sigma} \bmod L$. Hence, $x-y \equiv(x-y)^{\tau}+\mu_{\tau}$ $\bmod L$ for any $\tau \in R_{H}$, therefore $m(x-y)-\sum_{\tau \in R_{H}}(x-y)^{\tau} \in(M / m)^{-1} L$ is obtained. If $u \in \mathbb{R}^{N}$ with $m u=x-y$ is fixed, we have $(x-y)-\sum_{\tau \in R_{H}} u^{\tau} \in$ $M^{-1} L$. As a result, for any $\sigma \in R_{G}$, there exists $\xi_{\sigma} \in M^{-1} L$ such that ν_{σ} is represented as follows:

$$
\begin{equation*}
\nu_{\sigma} \equiv x-x^{\sigma}-\sum_{\tau \in R_{H}} u^{\tau}+\sum_{\tau \in R_{H}} u^{\tau \sigma}+\xi_{\sigma} . \tag{A.18}
\end{equation*}
$$

From Lemma C.1, $l^{*} \in L^{*}$ belongs to $\Gamma_{\text {ext }}(G, H)$ if and only if the following holds for any $R_{H} \sigma_{1} \in R_{H} \backslash R_{G}$:

$$
\begin{aligned}
\sum_{R_{H} \iota_{2} \sim R_{H} \sigma_{1}} e^{2 \pi i\left(x^{\sigma_{2}}+\nu_{\sigma_{2}}\right) \cdot l^{*}} & =\sum_{\substack{R_{H}{ }^{\circ *} \sim R_{H} \sigma_{1}}} e^{2 \pi i\left(x-\sum_{\tau \in R_{H}} u^{\tau}+\sum_{\tau \in R_{H}} u^{\tau \sigma_{2}}+\xi_{\sigma_{2}}\right) \cdot l^{*}} \\
& =e^{2 \pi i\left(x-\sum_{\tau \in R_{H}} u^{\tau}\right) \cdot l^{*}} e^{2 \pi i u \cdot \sum_{\tau \in R_{H} \tau \sigma_{1} l^{*}}} \sum_{R_{H} \sigma_{2} \sim R_{H} \sigma_{1}} e^{2 \pi i \xi_{\sigma_{2}} \cdot l^{*}}=0(\mathrm{~A} .19)
\end{aligned}
$$

This is impossible if l^{*} belongs to $M L^{*}$.

