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A table of geometrical ambiguities in powder indexing obtained
by exhaustive search

R. Oishi-Tomiyasu

Some terminologies in the theory of quadratic forms are used herein. In
particular, the following symmetric matrix (also called the metric tensor in
crystallography) is always identified with a ternary quadratic form f(x) =∑

1≤i≤j≤3 sijxixj:

S :=

 s11 s12/2 s13/2
s12/2 s22 s23/2
s13/2 s23/2 s33

 (A.1)

The above S is singular if the determinant equals zero, and integral if
all the sij (1 ≤ i, j ≤ 3) are integers. For any ring R such as Z, Zp, Qp, two
symmetric matrices S1, S2 are said to be equivalent over R, if there exists
w ∈ GL3(R) such that wS1

tw = S2. For any 0 6= v ∈ R3, tvSv is called a
representation of S over R.

A Proof of Proposition 1

Proof of Proposition 1. For the proof, it may be assumed that S, S2 have
rational entries, because S and S2 are simultaneously represented as finite
sums

∑
j λjTj,

∑
j λjT2j, where λj are linearly independent over Q, and

every Tj, T2j is rational and positive-definite (Lemma A.1). In the rational
case, the proposition is proved by Lemma A.2.

Lemma A.1. Let Si (1 ≤ i ≤ m) be Ni-by-Ni positive-definite symmetric
matrices with real coefficients. There are λ1, . . . , λs ∈ R>0 positive and lin-
early independent over Q and Ni-by-Ni rational positive-definite symmetric
matrices Tij (1 ≤ i ≤ m, 1 ≤ j ≤ s) such that every Si is represented as a
finite sum Si =

∑s
j=1 λjTij.

Proof. Let vSi be the row vector of length Ni(Ni+1)
2

with the (k, l)-entry of

Si in the (k+ l(l−1)
2

)-th entry. In this case, v := t(vS1 , · · · , vSm) is a column

vector of length
∑m

i=1
Ni(Ni+1)

2
. Using this v, a set P is defined by:

P :=
{
I ⊂

{
vj : 1 ≤ j ≤

∑m
i=1

Ni(Ni+1)
2

}
: vj ∈ I are linearly independent over Q

}
.(A.2)

Let {t1, . . . , ts} be one of the maximal elements of P under inclusive order.
When vectors t(t1, . . . , ts) and t(1, . . . , 1) of length s are denoted by t and

1s respectively, there exists a
∑m

i=1
Ni(Ni+1)

2
× s rational matrix C such
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that v = Ct. Furthermore, there exists ε > 0 such that for any s-by-s
matrix U with entries |ukl| < ε, every column t(vT1 , · · · , vTm) of C(t t1s−U)
corresponds to m positive-definite symmetric matrices T1, . . . , Tm of size Ni

(1 ≤ i ≤ m).
If t1sU

−1t 6= 1, we have the following equations (Is is the identity matrix
of size s):

(t t1s − U)−1 = U−1(( t1sU
−1t− 1)−1t t1sU

−1 − Is), (A.3)

(t t1s − U)−1t = ( t1sU
−1t− 1)−1U−1t. (A.4)

If all the entries of U−1t are negative, we have t1sU
−1t < 0, hence every

entry of (t t1s − U)−1t is positive. Fix U := (ukl) ∈ GLs(R) from those
having a rational t t1s−U and |ukl| < ε. Let Tij (1 ≤ i ≤ m, 1 ≤ j ≤ s) be
Ni-by-Ni symmetric matrices satisfying C(t t1s − U) = (vTij). In this case,
every Tij is rational and positive definite by the choice of U . Owing to the
following equation, Si is represented as a linear sum of Tij with positive
coefficients:

v = Ct = (vTij)(t
t1m − U)−1t. (A.5)

Hence, the statement is proved.

For any ringsR2 ⊆ R and anN -by-N symmetric matrix S with entries in
R2, let ΛR(S) be the set { tvSv : 0 6= v ∈ RN} consisting of representations
of S over R. If 0 ∈ ΛR(S), S is said to be isotropic over R. Otherwise, S
is anisotropic over R.

Lemma A.2. Suppose that an N-by-N symmetric matrix S is rational and
non-singular, and a symmetric matrix S2 of size 1 ≤ N2 < min{4, N} is
rational and anisotropic over Q. In this case, ΛZ(S) 6⊂ ΛZ(S2) holds.

Proof. We assume N2 + 1 = N = 4, because the other cases easily fol-
low from this. Since S is not singular, it satisfies ΛQp(S) ⊃ Q×p for any
finite prime p. On the other hand, there exists a finite prime p such
that ΛQp(S2) 6⊃ Q×p (cf. Corollary 2 of Theorem 4.1 in Chapter 6, Cas-
sels (1978)). If ΛZ(S) ⊂ ΛZ(S2), ΛQp(S) ⊂ ΛQp(S2) is required for any p.
This is a contradiction.

B Proof of Proposition 2

Two lattices in R3 are said to be derivative of each other if their metric
tensors S1, S2 are equivalent over Q:

Remaining proof of Proposition 2. The “if” part is proved herein; if there
exists such an a, S1 and S2 are equivalent over Qp for any p 6= 2 by Lemma
B.1. They are also equivalent over R, because they are positive-definite,
hence they have the same Hasse-Minkowski symbols cp for all primes p
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including 2,∞ (Lemma 1.1, Chapter 6, Cassels(1978)). Therefore they are
equivalent over Q by the weak Hasse principle (cf. Theorem 1.2, Chapter
6, Cassels(1978)).

Lemma B.1. Suppose that p is an odd prime and S1 and S2 are 3-by-3
non-singular symmetric matrices with Qp entries and detS1 = a2 detS2

holds for some a ∈ Qp. If S1 and S2 have the same representations over
Zp, they are equivalent over Qp.

Proof. By replacing S1, S2 with cS1, cS2 for some c ∈ Qp, we may assume
that all their entries belong to Zp, and 1 is represented by both of S1 and
S2 over Zp. Take n1, n2 ∈ Z and u1, u2 ∈ Z×p so that detSi = pniui 6= 0 is
satisfied for both i = 1, 2.

In this case, for each i = 1, 2, there exists ti ∈ Z×p and 0 ≤ li ≤ ni
2

such
that Si is equivalent over Zp to the following:1 0 0

0 pliti 0
0 0 pni−lit−1i ui

 (A.6)

We shall show that we can choose the same l, t as l1, l2 and t1, t2. If so,
each Si is equivalent over Zp to the following:1 0 0

0 plt 0
0 0 (plt)−1 detSi

 , (A.7)

From the assumption on detSi, S1 and S2 are equivalent over Qp as a result.

If l1 < n1 − l1, then l1 = l2 and
(
t1
p

)
=
(
t2
p

)
are obtained immediately.

Hence, t1, t2 can be set to a common value t ∈ Z×p . Otherwise, l1 = n1− l1,

hence S1 is equivalent to

1 0 0
0 pl1s 0
0 0 pl1s−1u1

 for any s ∈ Z× (cf. Lemma

3.4, Chapter8, Cassels (1978)). As a result, l1 = l2 and t1 = t2 may be
assumed even in this case.

C Proof of Proposition 3

What follows, coordinates in the real and reciprocal space are represented
as a row vector and a column vector respectively. Furthermore, group
actions on the spaces are represented as a right and left action respectively.

Any congruent transformation of the real space RN (N = 3 is not nec-
essary in this section) is represented as a composition of the orthogonal
group O(N) and a translation; if σ is a congruent transformation of RN ,
there exist τ ∈ O(N) and ν ∈ RN such that:

xσ = xτ + ν for any x ∈ RN . (A.8)
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Such a σ is denoted by {τ |ν}.
A crystallographic group G is defined as a discrete and cocompact sub-

group of the congruence transformation group. The translation group L
and the point group RG and of G are defined by:

RG := {σ ∈ O(N) : {σ|ν} for some ν ∈ RN}, (A.9)

L := {ν ∈ RN : {1N |ν} ∈ G}. (A.10)

In general, G is a group extension of L by RG (i.e., L is the kernel of the
natural onto map G� RG: {σ|ν} 7→ σ). From the definition of L, for any
{σ|νσ} ∈ G, the class νσ+L ∈ RN/L is uniquely determined. Furthermore,
the map RG → RN/L: σ 7→ νσ + L satisfies

νστ ≡ ντσ + ντ mod L. (A.11)

Such a map is called a 1-cocycle in the theory of group cohomology, and
corresponds to a cohomology class in [νσ] ∈ H1(RG,RN/L).

For any crystallographic group G and a finite subgroup H ⊂ G, the
following Γext(G,H) defines the set of systematic absences:

Γext(G,H) :=

{
0 6= l∗ ∈ L∗ :

∑
σ∈H\G/L e

2πixσ ·l∗ = 0

for any x ∈ RN stabilized by H

}
,(A.12)

The following lemma provides a method to compute Γext(G,H) listed in
the International Tables Vol. A (Hahn(1983)):

Lemma C.1. Let RH be the image of H by the natural onto map G →
RG : {σ|νσ} 7→ σ. For fixed l∗ ∈ L∗, the equivalence relation among the
right cosets RH\RG is defined by:

RHσ1
l∗∼RHσ2 ⇐⇒

def

∑
σ∈RHσ1

σl∗ =
∑

σ∈RHσ2

σl∗. (A.13)

For any x ∈ RN stabilized by H, l∗ ∈ L∗ belongs to Γext(G,H) if and only
if for every RHσ1 ∈ RH\R, we have∑

RHσ2
l∗∼RHσ1

e2πix
{σ2|νσ2}·l∗ = 0. (A.14)

Proof. For any x ∈ RN stabilized by H, l∗ ∈ Γext(G,H) holds if and only if∑
RHσ1∈RH\R

e2πi((x+δx)
σ1+νσ1 )·l

∗
= 0 for any δx ∈ RN stabilized by RH .(A.15)
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Furthermore,

δxσ1 · l∗ = δxσ2 · l∗ for any δx ∈ RN stabilized by RH

⇐⇒
∑
τ∈RH

(δx̃τσ1 − δx̃τσ2) · l∗ = 0 for any δx̃ ∈ RN

⇐⇒
∑
τ∈RH

δx̃ · (τσ1l∗ − τσ2l∗) = 0 for any δx̃ ∈ RN

⇐⇒
∑
τ∈RH

τ(σ1l
∗ − σ2l∗) = 0⇐⇒ RHσ1

l∗∼RHσ2. (A.16)

Hence, (A.15) holds if and only if the following does for all δx stabilized by
H: ∑

[σ1]∈(RH\R)/
l∗∼

e2πiδx
σ1 ·l∗

∑
RHσ2

l∗∼RHσ1

e2πi(x
σ2+νσ2 )·l

∗
= 0, (A.17)

which leads to the statement.

Proof of Proposition 3. If x is stabilized by H, ντ ≡ x − xτ mod L holds
for any τ ∈ RH . Hence, the cohomology class [νσ] ∈ H1(RG,RN/L) of the
1-cocycle σ 7→ νσ is mapped to 0 by the natural map H1(RG,RN/L) −→
H1(RH ,RN/L). As a result, [ντ ] is also mapped to 0 byH1(RG,RN/L)

×M/m−→
H1(RG,RN/L), where m is the order of RH (cf. Proposition 6 in Chap.
VII of Serre (1980)). Thus, for any σ ∈ RG, there exist y ∈ RN and µσ ∈
(M/m)−1L such that νσ ≡ y−yσ +µσ mod L. Hence, x−y ≡ (x−y)τ +µτ
mod L for any τ ∈ RH , therefore m(x−y)−

∑
τ∈RH (x−y)τ ∈ (M/m)−1L is

obtained. If u ∈ RN with mu = x−y is fixed, we have (x−y)−
∑

τ∈RH u
τ ∈

M−1L. As a result, for any σ ∈ RG, there exists ξσ ∈ M−1L such that νσ
is represented as follows:

νσ ≡ x− xσ −
∑
τ∈RH

uτ +
∑
τ∈RH

uτσ + ξσ. (A.18)

From Lemma C.1, l∗ ∈ L∗ belongs to Γext(G,H) if and only if the following
holds for any RHσ1 ∈ RH\RG:∑
RHσ2

l∗∼RHσ1

e2πi(x
σ2+νσ2 )·l

∗
=

∑
RHσ2

l∗∼RHσ1

e2πi(x−
∑
τ∈RH

uτ+
∑
τ∈RH

uτσ2+ξσ2 )·l
∗

= e2πi(x−
∑
τ∈RH

uτ )·l∗e2πiu·
∑
τ∈RH

τσ1l∗
∑

RHσ2
l∗∼RHσ1

e2πiξσ2 ·l
∗

= 0.(A.19)

This is impossible if l∗ belongs to ML∗.
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