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1. Parseval's theorem and corollaries for electron density images reconstructed by Fourier 

synthesis. 

Parseval's theorem: 

Suppose that A(x) and B(x) are two square integrable complex-valued functions of period 2π 

with Fourier series 
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where i is the imaginary unit and horizontal bars indicate complex conjugation. 

The structure factor )(HF  is the Fourier transform of the electron density distribution
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then 
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where )(HF  and )(rρ  are complex conjugate functions of )(HF  and )(rρ , respectively.  

According to Parseval's theorem, we have 
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Because )(rρ  = )(rρ  ( )(rρ  is a real function), 

then 
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Since )(HF  is discrete, the above equation can be re-written as 
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where M is the number of structure factors. 

For any given group of |F(H)|2 (diffraction data), 
2)(∑
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is also a constant.  

Because 
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where ρ+ and ρ- are the non-negative and negative electron density, respectively, at the grids 

across the unit cell, then 
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2. Iterative process of reconstructing the electron density image with maximum entropy 

method (MEM). 

The entropy of the electron density distribution is defined as 
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where ρi is the number of electrons at the ith grid of the unit cell, Z is total number of electrons in 

the unit cell, ∑= iZ ρ . 

For any phase set which is assigned to the observed moduli, the consistence between the 

calculated and “observed” structure factors can be measured by the residual factor, which is 

defined as 
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where H
obsF  is the "observed" structure factor, H

calF  is the calculated structure factor, H
obsFσ  is 

the standard deviation of H
obsF , and M is the number of structure factors. The “observed” 

structure factor is the combination of observed modulus and assigned phase. H
calF  is generated by 

calculating the Fourier transform of the electron density distribution. 

Build a function 

ZRHG mem ++= λρ )(  

where λ is a disposable constant to be evaluated. The goal of iterative process of MEM is to 

maximize the entropy H subject to the conditions that Rmem is minimized and Z remains 

unchanged. This was achieved by setting 
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This leads to 
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In the iterative process of MEM, the value of ρi in the (n+1)th iterative cycle, 1+n
i

ρ , is 

derived from the electron density image of the nth cycle using the above equation, namely 
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where H
ncalF ,  is the calculated structure factor obtained by Fourier transforming the electron 

density image of the nth iterative cycle. 

Before the iterative process of MEM, a positive initial value is assigned to ρi. In most cases, a 

uniform positive value is assigned to each grid as the initial value, which is known as the uniform 

model. As ρi is an exponential function, it is always positive in the iterative process.  

  



 
Figure S1. (a) The atomic structure model of Al(IO3)3(H2O)8 and the electron density images 

reconstructed with (b) the algorithm based on Tian1, (c) the error reduction and (d) charge flipping 

algorithms. The original atomic structure model was superimposed upon the electron density 

images to show the consistence between them. The atomic coordinates in the structure model are 

translational shifted and/or inverted to make a direct comparison with the electron density images 

in (b), (c) and (d). 


