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1 Supplemental Material

1.1 Peak adjustment at cluster boundaries

When clusters combine SrMise performs a recursive search for peaks, but there are two
separate recursive cases. In the first case, which is performed when at least one peak exists,
the peaks in the two clusters are jointly fit and extraction is then performed on the
residuals. In the second case, which occurs when each of the adjacent clusters contains at
least one peak, no fit is performed. However, if the total value of the peaks at the the
boundary between clusters exceeds the value of the data at that point, then the peak
parameters in the adjacent clusters are adjusted so that they equal the experimental value.
Recursion is then performed over the residuals. Details of adjusting the peaks for the
second case follow.

Suppose we have adjacent clusters A, B with nA, nB peaks and where the ith peak in each
is given by the peak function Ai, Bi. The value of the PDF at the boundary r = rb is
approximated by linear interpolation

rb = 1
2(redgeA + redgeB)

G(rb) = 1
2(G(redgeA) +G(redgeB))

where redgeA and redgeB are the r-coordinates of the data point in each cluster nearest to
the other cluster.

If ∑iAi(rb) +∑
j Bj(rb) > G(rb) the peak parameters are adjusted to meet the following

conditions, assuming a solution exists.

1. The sum of the adjusted peaks at rb is G(rb).

2. The relative contribution from each peak at rb is unchanged.

3. The position and height of the local maximum of each peak (ignoring any effect from
the baseline) is unchanged.

Define the constant s > 1, which determines how the contribution of the peaks must
change at rb.

s =
∑
iAi(rb) +∑

j Bj(rb)
G(rb)

(1)

Given an initial Gaussian over r peak function

f(r;µ1, σ1, a1) = a1

rσ1
√

2π
exp

(
−(r − µ1)2

2σ2
1

)
(2)
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the new parameters (µ2, σ2, a2) are given by the solution to following system of equations.

f(rb;µ1, σ1, a1) = sf(rb;µ2, σ2, a2)

rmax s.t. df(r;µ1, σ1, a1)
dr

∣∣∣∣∣
r=rmax

= df(r;µ2, σ2, a2)
dr

∣∣∣∣∣
r=rmax

= 0

f(rmax;µ1, σ1, a1) = f(rmax;µ2, σ2, a2)

A solution exists if µ2
1 ≥ 4σ2

1, equivalent to the physically trivial condition that the peak
function has a local maximum. Defining the intermediate quantities

rmax = 1
2(µ1 +

√
µ2

1 − 4σ2
1)

k = log(s) + (rb − rmax)(rb − 2µ1 + rmax)
2σ2

1

the solution is

σ2 =

√√√√ rmax(rb − rmax)2

(rb − rmax + krmax)

µ2 = σ2
2 + r2

max
rmax

a2 = a1
σ2

σ1
exp

(
−(rmax − µ1)2

σ2
1

)
/ exp

(
−(rmax − µ2)2

2σ2
2

)
.

The conversion to SrMise’s internal parameterization is straightforward. In fact, any peak
initially expressible in that width-limited parameterization remains expressible after this
transformation because the peak’s full-width at half-maximum decreases for s > 1.

1.2 PDF Baseline of PbTe nanoparticle

For a well normalized PDF the baseline is 4πρ0γ0(r), as in the main text. We approximated
the baseline for the PbTe nanoparticle by treating it as a simple sphere. Given a sphere of
radius R, γ0(r) = 1− 3r

4R + r3

16R3 on the interval [0, R], and 0 elsewhere (Guinier
et al., 1955). Since the number density may not be known, and a PDF is not necessarily
well normalized, SrMise subsumes the leading constants into a fittable scale factor.

The particular baseline used during the SrMise trials were R = 11.36 Å with scale factor
of ∼.281. These ad hoc values were determined visually by varying the baseline over a plot
of the experimental PDF, and we do not justify them beyond the barest physical
considerations. This baseline is adequate only for rough exploration, study of gross
features, and the benchmarking performed. Next we consider a PDF where the baseline is
estimated much more carefully.
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1.3 Interparticle Correlation for C60

The PDF of the C60 sample has a substantial contribution from interparticle correlations.
It is well known that in the solid phase at room temperature these form an FCC lattice
with lattice constant ≈14.11 Å, and at each lattice site the molecules spin in a random
orientation (Heiney et al., 1991). The interparticle correlation therefore averages to a PDF
much like that of atomic FCC, while the precise atomic correlations with a single molecule
are preserved. The diameter of C60 is roughly 7 Å, but because the nearest neighbor
distance is about 10 Å, interparticle correlations become evident past approximately 3 Å,
well within the region of interest for a single molecule.

For the present study we estimated the interparticle contribution to the PDF by modeling
C60 as hollow spheres of fixed density and calculated the radial distribution function (RDF)
analytically in terms of the inner and outer radius, as well as the lattice constant. The
assumption is that the random orientation and spinning of the molecules makes this a good
approximation to the effect on the experimental PDF. This form is clearly presaged on
some prior knowledge of the molecule’s structure, but as discussed in the main text such
knowledge (or a reasonable guess) is essentially required in all but the simplest cases. The
strength of the structural assumptions in this case permits a detailed model with very few
free parameters.

The calculation proceeds in three steps. First, the RDF between two non-overlapping
sphere is found, followed by that for two hollow spheres, and finally an FCC lattice of these
spheres are fit to the data.

1.3.1 RDF between two spheres

Given two spheres with radii r1 and r2, respectively, and whose centers are separated by
the distance d ≥ r1 + r2, calculate the RDF R(r). Assume the spheres consist of the same
material of homogenous density, fixed to 1 for simplicity. Due to the spherical symmetry
the RDF depends only on the distance between them, and so no angle-averaging or other
special consideration of orientation is required. The strategy is selecting a point
~p = ~p(p, θ, φ) within the sphere 1 and calculating the partial contribution R(r, p, θ) to the
full RDF between ~p and points within sphere 2 a distance r away. Integrating over all
points within sphere 1 will then obtain RDF. The coordinate system for ~p is the standard
spherical-polar coordinates with origin at the center of sphere 1 and the positive z-axis
along the line which connects it to the center of sphere two.

By the definition of the radial distribution function

R(r)dr =
∫ r1

0

∫ 2π

0

∫ π

0
R(r, p, θ)p2 sin(θ) dθ dφ dp dr

= 2π
∫ r1

0

∫ π

0
R(r, p, θ)p2 sin(θ) dθ dp dr.

(3)
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Denote the distance between ~p and the center of sphere 2 as dp. The line between these
points defines the primed coordinate system (r, θ′, φ′). Therefore, R(r, p, θ) is the
contribution from thin spherical shells of thickness dr which intersect sphere 2. For any
given shell this is dr times the surface area of a sphere of radius r where it passes through
sphere 2.

Now, the intersection of any two spheres A and B of radius a and b and separated by a
distance dab defines a circle of intersection (at the surface of both spheres) of radius

c = 1
2dab

√
4d2

aba
2 − (d2

ab − b2 + a2)2. (4)

In this case dab = dp, a = r, and b = r2 since sphere A is the one centered at point ~p of
radius r and sphere 2. Therefore

c = 1
dp

√
4d2r2 − (d2

p − r2
2 + r2)2. (5)

Then θ′ = arcsin( c
r
) defines the angle subtended by the intersection. Therefore

R(r, p, θ)dr =
∫ 2π

0

∫ arcsin( c
r

)

0
r2 sin(θ′) dθ′ dφ′

= 2πr2
∫ arcsin( c

r
)

0
sin(θ′) dθ′

= 2πr2

1−
√

1− c2

r2


= πr2

2−

√√√√(r2 + d2
p − r2

2)2

r2d2
p

 .

Furthermore, from the law of cosines dp =
√
d2 + p2 − 2dp cos(θ), so

R(r, p, θ) = πr2

2−

√√√√(d2 + p2 + r2 − 2dp cos(θ)− r2
2)2

r2(d2 + p2 − 2dp cos(θ))

 . (6)

This partial RDF is only physical for√
d2 + p2 − 2dp cos(θ)− r2 ≤ r ≤

√
d2 + p2 − 2dp cos(θ) + r2 (7)

(the zeros occur at the equalities), otherwise the spheres overlap. Since point ~p is within
sphere 1, it is also the case that dp > r2, d > r2, and d > p cos(θ) + r2. We define the
partial PDF as a piecewise function that is identically 0 outside the bounds just specified.

To integrate equation 6 over θ the proper boundaries of integration must be determined.
This is dependent on d, p, and r due to the inequalities on the partial RDF just described.
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Solving 7 for θ at the equalities yields

θ1 = arccos
(
d2 + p2 − (r − r2)2

2dp

)
(8)

θ2 = arccos
(
d2 + p2 − (r + r2)2

2dp

)
(9)

This is not quite complete, however, because the argument to arccos can fall outside the
range [−1, 1] for physical values of d, p, r, and r2. This corresponds to situations where
these parameters are not necessary to constrain θ to the usual range, and leads the above
expression to return a complex result. This can be removed by keeping only the real
portion of 8 with the helpful identity

<(arccos(x+ iy)) = arccos
(1

2
√

(x+ 1)2 + y2 − 1
2
√

(x− 1)2 + y2
)

(10)

for real x and y. The argument in 8 is always real, therefore

θ1 = arccos

−1
2

√√√√(−1 + d2 + p2 − (r − r2)2

2dp

)2

+ 1
2

√√√√(1 + d2 + p2 − (r − r2)2

2dp

)2


θ2 = arccos

−1
2

√√√√(−1 + d2 + p2 − (r + r2)2

2dp

)2

+ 1
2

√√√√(1 + d2 + p2 − (r + r2)2

2dp

)2
 .

Evaluating the integral yields the unwieldy expression

R(r, p, d, r2) = πrp

6
√

2d

(√
2(d2 + p2) + |α1| − |α2|

(
−β + 3

√
2r
√

2(d2 + p2) + |α1| − |α2|+ |α2| − |α1|
)

+

√
2(d2 + p2) + |α3| − |α4|

(
β − 3

√
2r
√

2(d2 + p2) + |α3| − |α4|+ |α3| − |α4|
))
(11)

where

α1 = d2 − 2dp+ p2 − (r + r2)2

α2 = d2 + 2dp+ p2 − (r + r2)2

α3 = d2 − 2dp+ p2 − (r − r2)2

α4 = d2 + 2dp+ p2 − (r − r2)2

β = 2d2 + 2p2 + 6r2 − 6r2
2.

To integrate equation 11 over p it is helpful to first remove the absolute values by splitting
the function into cases corresponding to whether the αs are positive or negative. We define
a 4-symbol signature for each of the cases. For example, the function R++−−(r, p, d, r2)
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corresponds to positive α1 and α2, and negative α3 and α4. The values of r where each α is
positive is given below.

α1 : 0 ≤ r ≤ d− p− r2

α2 : 0 ≤ r ≤ d+ p− r2

α3 : 0 ≤ r ≤ d− p+ r2

α4 : 0 ≤ r ≤ d+ p+ r2

Therefore, with respect to increasing r, α1 is always the first to become negative, and α4
the last. When p < r2 then α2 becomes negative second and α3 third. When p > r2, then
α3 becomes negative second and α2 third. Given that, enumerate the 6 possible values of
the integrand.

R++++ : 0

R−+++ : −πpr(−d+ p+ r − 2r2)(−d+ p+ r + r2)2

3d

R−−++ : −2πp2r(p2 + 3(d− r)2 − 3r2
2)

3d

R−+−+ : 4πprr3
2

3d

R−−−+ : −πpr(d+ p− r − 2r2)(d+ p− r + r2)2

3d
R−−−− : 0

These integrands were determined by conditions on r, but to integrate over p the conditions
on p where the limits of integration hold must also be calculated from the inequalities.

R(r, p, d, r2) =



R−−++ : r ≤ d and 0 ≤ p ≤ −d+ r2 + r

R−+++ : r ≤ d and
√

(d− r2 − r)2 ≤ p ≤ d+ r2 + r

R−+−+ : r ≤ d and p ≥ d+ r2 − r
R−−++ : r ≥ d and 0 ≤ p ≤ d+ r2 − r
R−−−+ : r ≥ d and

√
(d+ r2 − r)2 ≤ p ≤ −d+ r2 + r

R−+−+ : r ≥ d and p ≥ −d+ r2 + r

0 : elsewhere.

(12)

The limits given for R−+++, R−+−+, and R−−−+, need no further alteration since they are
physical for all values of the parameters. Unfortunately, the limits given for R−−++ are not
yet enough to perform the integration because for some values of d, r, and r2 the
expression −d+ r2 + r may be a negative value which has no physical meaning.

Since R−−++ is even in p it is possible to rewrite the integral in a way which avoids this
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difficulty. For example, for the case where r ≤ d∫ −d+r2+r(≥0)

0
R−−++ dp = 1

2

∫ −d+r2+r

0
R−−++ dp+

∫ √(−d+r2+r)2

0
R−−++ dp


= 1

2

∫ −d+r2+r

−
√

(−d+r2+r)2
R−−++ dp.

Since the new lower bound is guaranteed to be negative but has the same magnitude as the
upper bound, the integral is identically 0 for unphysical situations, and correctly adjusted
by the additional factor of half in physical situations where the upper bound is positive.
The case r ≤ d is similar.

Finally, since the integral of interest is
∫ r1

0 R(r, p) dp but 0 ≤ r1 ≤ d− r2, any of the
piecewise portions might be truncated before reaching its “natural” upper integration limit.
Therefore, the integrals are calculated analytically with respect to an arbitrary upper
bound u. For r ≤ d these are

1
2

∫ u

−|u|
R−−++(r, p) dp = − πr

15d (u5 + 5u3((d− r)2 − r2
2) + 5((d− r)2 − r2

2)|u|3 + |u|5)∫ u

√
(d−r2−r)2

R−+++(r, p) dp = πr

60d (−4u5 + 15u4(d− r) + 10u2(−d+ r + r2)2(d− r + 2r2)

− 5(−d+ r + r2)4(5d− 5r + 4r2)− 20u3(d2 − 2dr + r2 − r2
2)

+ 20(d2 − 2dr + r2 − r2
2)| − d+ r + r2|3 + 4| − d+ r + r2|5)∫ u

√
(d−r2−r)2

R−+−+(r, p) dp = 2πr
3d r

3
2(u2 − (d− r + r2)2)

and for r ≥ d they are
1
2

∫ u

−|u|
R−−++(r, p) dp = − πr

15d (u5 + 5u3((d− r)2 − r2
2) + 5((d− r)2 − r2

2)|u|3 + |u|5)∫ u

√
(d+r2−r)2

R−−−+(r, p) dp = πr

60d (−4u5 − 15u4(d− r)− 10u2(d− r − 2r2)(d− r + r2)2

+ 5(5d− 5r − 4r2)(d− r + r2)4 − 20u3(d2 − 2dr + r2 − r2
2)

+ 20(d2 − 2dr + r2 − r2
2)|d− r + r2|3 + 4|d− r + r2|5)∫ u

√
(−d+r2+r)2

R−+−+(r, p) dp = 2πr
3d r

3
2(u2 − (−d− r + r2)2).

By examining the various intervals where these expressions are valid, one can write down
the following surprisingly compact form for the (unnormalized) RDF.

R(r) =



π
60dr(−d+ r + r1 + r2)3(d2 + r2 − 3r(r1 + r2)− 4(r2

1 − 3r1r2 + r2
2) + d(−2r + 3(r1 + r2)))

− 2π
15drr

3
1(5(d− r)2 + r2

1 − 5r2
2)

− 2π
15drr

3
2(5(d− r)2 + r2

2 − 5r2
1)

π
60dr(d− r + r1 + r2)3(d2 + r2 + 3r(r1 + r2)− 4(r2

1 − 3r1r2 + r2
2)− d(2r + 3(r1 + r2)))

0
(13)
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with corresponding bounds

d− r1 − r2 ≤ r ≤ d− |r1 − r2|
d− |r1 − r2| ≤ d+ |r1 − r2| and r1 ≤ r2

d− |r1 − r2| ≤ d+ |r1 − r2| and r2 ≤ r1

d+ |r1 − r2| ≤ r ≤ d+ r1 + r2

elsewhere.

(14)

The correctness of this expression can be easily verified by numerical integration of
equation 3 using equation 6.

The normalization constant is∫ ∞
0

R(r) dr =
∫ d+r1+r2

d−r1−r2
R(r) dr = 8π

9 r3
1r

3
2, (15)

which is, as expected, dependent only on the size of the spheres.

1.3.2 RDF between two hollow spheres

The RDF between two hollow spheres with inner radii r1,i and r2,i, outer radii r1,o and r2,o,
and separated by a distance d ≥ r1,o + r2,o can be calculated from the RDF between solid
spheres. This is given by the RDF from the non-hollow region of sphere 1 to the entirety of
sphere 2, less any contributions which are missing due to the hollow regions. Given
R(r) = R(r; r1, r2), for hollow spheres

Rhollow(r) = (R(r; r1,o, r2,o)−R(r; r1,i, r2,o))− (R(r; r1,o, r2,i)−R(r; r1,i, r2,i)). (16)

The normalization constant follows directly.∫ ∞
0

Rhollow(r) dr = 8π
9 (r3

1,o − r3
1,i)(r3

2,o − r3
2,i) (17)

1.3.3 Fitting to experimental C60 PDF

The distance to the lattice point in the nth FCC shell is a
√

2n
2 for lattice parameter a. We

treat the approximating hollow sphere to have a maximum radius 7.13+1.44
2 Å, where the

second term in the numerator approximates the "thickness" of the C60’s walls as the
carbon-carbon nearest neighbor distance. The first non-zero contribution from the nth cell
occurs therefore occurs at approximately (14.11

√
2n
2 − (7.13 + 1.44)) Å. For the 8th and 9th

shells these are roughly 19.6 Å and 21.4 Å, so for a PDF out to 20 Å it suffices to fit
through the 8th shell.
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Figure 1: The fit baseline (in red) for C60 as determined by approximating its interparticle
correlation with an FCC lattice of hollow spheres, up to a scale factor. Above 7.5 Å the
single molecule PDF no longer contributes, so all those points are fit. Only the 6 points
shown in black are included in the fit below 7.5 Å, but they are sufficient to constrain the
fit because improvements above that range tend to induce very large costs below it.

The RDF of the interparticle correlation is then easily calculated, up to a scale factor, as
the sum of the contribution from each shell, weighted by the number of contributing
spheres. Starting from the nearest neighbor these weights are 12, 6, 24, 12, 24, 8, 48, and 6.

This model was fit using unweighted least squares to the experimental PDF from 7.5 Å to
20 Å (i.e. beyond the single molecule contribution) along with a few selected points below
7.5 Å (figure 1). These last points constrain the fit in the region where the interparticle
correlation approaches 0, and they were chosen because points in the troughs of well
separated peaks should be near the baseline. The approximate results of the fit are an
inner radius of 3.07 Å, an outer radius of 4.06 Å, and lattice parameter 14.11 Å.
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