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Supporting information 

Appendix 

Calculations of the lower bounds on the mixed volumes for system (1) from the main text 

for 3- and 2-dimensional crystals 

An individual polynomial equation of system (1) is: 

 

        (A1) 

 

For a given j, the projection of the 3(N-1)-dimensional Newton polytope given by the 

left-hand side polynomial onto the 3-dimensional space of powers of ξj, ηj and ζj is a 

centrosymmetric line segment with the ends at (-h, -k, -l) and (h, k, l). Because this 

projection is two-dimensional, i.e. its dimensionality is less than 3, the 3(N-1)-

dimensional volume of this Newton polytope (V3D,1) is zero. By the same argument, the 

volume of the Newton polytope for the analogous polytope defined for a two-dimensional 

crystal (V2D,1) is zero. 

 We will consider the Minkowski sum of two analogous Newton polytopes, one 

defined for (h1, k1, l1) and the other for (h2, k2, l2). Here, the projection of this sum onto 

the 3-dimensional space of powers of ξj, ηj and ζj (for any given j) is a parallelogram and; 

therefore, the volume of the Minkowski sum polytope (V3D,2) is zero. A different scenario 

arises for the analogous Minkowski sum for a 2-dimensional crystal, where one polytope 

is defined for (h1, k1) and the other for (h2, k2). The corresponding equations can be 

written as: 
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             (A2) 

             (A3) 

where 

 , j = 1, 2, …, N-1            (A4) 

 

 , j = 1, 2, …, N-1                      (A5) 

The new system A2-A5 is a system of polynomial equations that is equivalent to the 

original one. As a result of this substitution, the Newton polytopes for eqs. A2 and A3 are 

so-called h-polytopes defined and analyzed by our group for the case of a one-

dimensional crystal (Al-Asadi et al., 2012), where h = 1. Because X1,j and X2,j can be 

viewed as new independent variables, the volume of the convex hull of the Minkowski 

sum of the Newton polytopes defined by eqs. A3 and A4 is equal to the product of the 

volumes of two h-polytopes with h = 1, derived previously by our group (Al-Asadi et al., 

2012). In order to calculate the volume in the original coordinates, one can treat eqs. A4 

and A5 as N-1 pairwise shrinking coordinate transformations, with each pair being 

independent with respect to index j. Therefore, the final volume is: 

 

                      (A6) 
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The term |h1k2-h2k1| is equal to the area of a parallelogram with vertices at (0, 0), (h1, k1), 

(h2, k2) and (h1+h2, k1+k2). A generalization of this formula to the Minkowski sum of m 

Newton polytopes corresponding to m equations for Ihk for m different pairs (hp, kp), p = 

1, 2, …, m yields a lower bound on the respective volume of the sum: 

 

        (A7) 

 

The summation term is equal to the total area of parallelograms formed as described 

above by all possible combinations of two distinct pairs (hp, kp), or the convex hull of the 

Minkowski sum of the m sets {(0,0), (hp, kp)}. The right hand side in inequality A7 is a 

lower bound and not an exact volume due to additional elements present in the sum 

polytope for m > 2 that cannot be readily accounted for in an expression general for all m.  

The Minkowski sum polytope coincides with the lower bound when the reflections are 

located on the axes of the reciprocal lattice. Owing to the monotonicity property of the 

mixed volume (with respect to polytope containment), one obtains a lower bound on the 

mixed volume of Newton polytopes by using the lower bound of the Minkowski sums 

defined by inequality (A7). 

Analogously, for a three-dimensional crystal we obtain a lower bound on the 

volume of the convex hull of the Minkowski sum of m > 2 polytopes corresponding to eq. 

A1 for m triplets (h, k, l): 
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(A8) 

 

The summation term in the parentheses of the right-hand side of inequality A9 is equal to 

the total volume of parallelepipeds ( ) constructed by Minkowski addition 

operations on the origin (0, 0, 0) and all possible combinations of three distinct triplets 

(hp, kp, lp), analogously to the parallelogram construction in the two-dimensional case. 

 The lower bounds on the volumes of the Minkowski sum polytopes are used to 

calculate the respective bounds on the mixed volume, owing to the monotonicity property 

of mixed volume. By analogy with our previous report (Al-Asadi et al., 2012), a direct 

substitution of the right-hand side eq. (A8) into the definition of a mixed volume (given 

in Supplemental Information to the above ref.) yields: 

   

(A9)

 

Here, the product is calculated over all different N-1 triplets (p1, p2, p3), in which each 

index is used only once in each product. The outside summation is performed over all of 

such triplet combinations. The multiplier (N-1)! is a coefficient in front of every term, 

equal to the number of permutations that yields each product, as it originates from raising 

the sum of the individual volumes to the power of N-1 in eq. (A8). Analogously, for a 

two dimensional crystal: 
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(A10)

 

where areas of the parallelepipeds defined above are used instead of the volumes and the 

combinatorics are changed accordingly. For example, for N = 3 in the two-dimensional 

case, the summation terms raised to the power of N-1 in eq. (A7) in the mixed volume 

calculation simplify to the term: 

2A12A34+2A14A23+2A13A24, where 

Apq = |hpkq – hqkp| 

Here, (N – 1)!=2!, which is the factor of 2 in this equation. 

The sum of the products of the parallelepiped volumes on the right-hand side of 

(A9) generally cannot be calculated in the close form. We estimate it based on a scaling 

argument, as follows. For a one-dimensional crystal the analogous term is exactly equal 

to (N-1)! (Al-Asadi et al., 2012). For a three-dimensional crystal, the half-ball in the 

reciprocal space (h ≥ 0) enclosing 3(N-1) of reflections has the radius R determined by 

the relationship: (2π/3)R3 ≈ 3(N-1), i.e.  

R3D ≈ [9/(2π)(N-1)]1/3 

Analogously, for a two-dimensional crystal, the radius of the corresponding half-disk is  

R 2D ≈ [4/π(N-1)]1/2 

Therefore, to a good approximation, the volume and area products on the right-hand side 

of eqs. (A9) and (A10) are equal to [9/(2π)]N-1(N-1)! and [4/π] N-1(N-1)! for a three- and a 

two-dimensional crystal, respectively. Multiplying by the number of such terms in the 

summation yields for a three-dimensional crystal 
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    (A11) 

Similarly, for a two-dimensional crystal 

    (A12) 

 

Note that these expressions become increasingly accurate with increasing N, except for 

very small N, since the ball and the circle are poor approximations of the distributions of 

reflections for small numbers of reflections. For small N, accurate calculations can be 

performed by exact computation of the mixed volumes by using existing software, as 

described in the text. 

 

Newton polytopes and the Bernstein’s theorem on the number of roots of 

polynomial systems 

Here, we give the algebraic terminology and the Bernstein’s theorem formulation 

used in the main text.  

A Laurent polynomial is a function of N independent complex variables ,…,

defined as a sum of monomial terms  , where  are complex coefficients 

and β1,k,…, βN,k are integer powers, which can be positive, zero or negative. This means 

that for each monomial there is one point in Euclidian space RN whose coordinates are 

(β1,k, …, βN,k). For a given Laurent polynomial, these points define vertices of a polytope 
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in RN. The convex hull of this polytope is called the Newton polytope of this polynomial. 

(A geometrical object is convex when a line segment between any two points that belong 

to this object lies entirely in that object. A convex hull of a polytope is a minimal convex 

polytope that contains the given polytope.) The Minkowski sum of two polytopes A and 

B is a polytope, whose vertices are defined by vector sums of each vertex of polytope A 

and each vertex of polytope B.  

The Bernstein’s theorem states that a system of d Laurent polynomial equations 

with d unknowns has at most the number of roots equal to the so-called mixed volume of 

this system, Vmix, defined by the following linear combination of d-dimensional volumes 

VM,p: 

                    
(B1) 

where for a given p, VM,p are volumes of convex hulls of the Minkowski sums of all 

combinations of p different Newton polytopes of this system. For example, for a system 

of 3 polynomial equations with 3 unknowns: 

 

,        (B2) 

where Ak is the Newton polytope of the k-th polynomial in the system, the “+” symbol 

applied to the polytopes denotes their Minkowski addition, “conv” is the convex hull 

operator. 

In practical cases where monomial coefficients are sufficiently generic (e.g. the 

monomial terms do not cancel out and the polynomials are not linearly dependent), the 

above mixed volume is known to be equal to the number of roots of the polynomial 
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system. Therefore, the Bernstein’s theorem provides a general approach to analyzing the 

number of roots of a multivariate polynomial system of d equations with d unknowns 

when variable elimination is not possible. 
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